
深度学习基础
文章平均质量分 84
学习DL基础知识
Uncertainty!!
学无止境!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Introducing Optimization
了解导数和偏导数在优化中的作用原创 2025-01-04 18:24:59 · 826 阅读 · 0 评论 -
Calculating Network Error with Loss
计算神经网络的交叉熵损失和模型精确度原创 2025-01-04 12:27:28 · 715 阅读 · 0 评论 -
Activation Functions
给神经元添加激活函数原创 2025-01-02 20:46:20 · 1291 阅读 · 0 评论 -
Adding Hidden Layers
简要实现隐藏层原创 2025-01-01 15:42:36 · 647 阅读 · 0 评论 -
Coding Our First Neurons
简要实现单层神经元原创 2025-01-01 12:08:14 · 979 阅读 · 0 评论 -
一文窥见神经网络
简要了解神经网络原理(包含反向传播算法推导)、简要实现使用神经网络拟合函数原创 2024-11-14 20:29:59 · 1253 阅读 · 0 评论 -
Einsum(Einstein summation convention)
简要了解einsum原创 2024-09-08 22:02:57 · 1147 阅读 · 0 评论 -
数据集的简单制作和使用
利用labelme制作数据集并进行信息的简单提取原创 2024-08-14 16:25:18 · 576 阅读 · 0 评论 -
Numpy array和Pytorch tensor的区别
简要了解numpy array和pytorch tensor的区别原创 2024-06-29 23:01:03 · 1107 阅读 · 0 评论 -
U-Net for Image Segmentation
了解Unet构建过程原创 2024-06-22 17:18:17 · 1310 阅读 · 0 评论 -
欠拟合、过拟合、正则化、学习曲线
简要了解欠拟合、过拟合、正则化、学习曲线原创 2023-06-25 00:11:31 · 1015 阅读 · 0 评论 -
模型评估 (Model Assessment)
简要了解模型评估的几个指标原创 2023-06-24 22:35:10 · 1265 阅读 · 0 评论 -
多项式回归的原理及实现、多重回归的原理
简要了解多项式回归并实现该原理原创 2023-06-24 20:15:59 · 1938 阅读 · 0 评论 -
逻辑回归(Logistics Regression)的原理及实现
简要了解逻辑回归的底层原理原创 2023-06-23 23:25:42 · 1782 阅读 · 0 评论 -
感知机(Perceptron)的原理及实现
简要理解感知机底层原理原创 2023-06-23 14:39:44 · 1335 阅读 · 0 评论 -
最小二乘法的原理及实现
简要了解最小二乘法并实现原理原创 2023-06-22 16:13:13 · 1459 阅读 · 0 评论 -
方向梯度直方图(Histogram of Oriented Gradient)
图像->cell梯度->cell梯度直方图 ->cell特征向量 ->block特征向量->图像特征向量。原创 2023-04-24 18:38:01 · 1470 阅读 · 0 评论 -
卷积神经网络底层原理
简要了解卷积神经网络原创 2023-04-12 00:34:48 · 1017 阅读 · 0 评论 -
深度神经网络底层原理
简要理解深度神经网络的底层原理原创 2023-04-09 20:08:54 · 294 阅读 · 0 评论 -
手写数字识别原理
上图第一个是识别数字1的模型(参数W已确定,即紫色线的值是非0,其他线为0),对应到图中,就是与第一个神经元连接的所有线中只有第五根线是紫色的(就是w5是非0的)、与第二个神经元连接的所有线中第五根线是紫色的(就是w13是非0的),即识别数字1的模型参数中W5、W13、W18、W44、W52、W59为非0的,其余值都为0,如果送入的像素刚好都能和紫色线匹配上,则会达到阈值,使得最后一个神经元被激活,则判断送入的数字为1,如果只有部分像素能和紫色线匹配上则判断送入的数字不是1。原创 2023-03-17 22:22:08 · 806 阅读 · 0 评论 -
机器学习和AI底层逻辑
声明:以下为《大话计算机》作者冬瓜哥课程视频截图,仅供学习。原创 2023-03-17 20:23:51 · 1217 阅读 · 0 评论 -
吴恩达机器学习课程笔记:正规方程法
简要了解正规方程法,简单比较正规方程法与梯度下降法原创 2023-01-20 22:42:37 · 679 阅读 · 0 评论 -
吴恩达机器学习课程笔记:多元梯度下降法
简单了解特征缩放的方法,多元梯度下降算法原创 2023-01-19 23:48:34 · 849 阅读 · 0 评论 -
吴恩达机器学习课程笔记:梯度下降法
简要了解梯度下降法的原理原创 2023-01-17 23:31:16 · 581 阅读 · 0 评论 -
吴恩达机器学习课程笔记:模型描述、假设函数、代价函数
什么是模型?通过对假设函数中参数的优化得到最优模型,优化过程通过最小化代价函数来实现原创 2023-01-17 12:12:34 · 964 阅读 · 0 评论 -
吴恩达机器学习课程笔记:监督学习、无监督学习
监督学习与无监督学习的根本区别:监督学习的数据既有特征又有标签,而非监督学习的数据中只有特征而没有标签。原创 2023-01-15 18:01:48 · 680 阅读 · 0 评论 -
神经网络入门(下)
简要介绍过拟合,正则化原创 2022-07-03 14:59:22 · 372 阅读 · 0 评论 -
神经网络入门(上)
个人笔记:从零开始构建简单的神经网络,含全部代码和部分解释原创 2022-06-28 20:13:47 · 860 阅读 · 4 评论