云上AI推理平台全掌握 (1): PAI-EAS LLM服务一键压测

前言

在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。

阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在AI时代抢占先机,让我们一起探索云上AI推理的无限可能,释放大模型的真正价值!

在云上构建高效、可扩展的AI推理平台,不仅需要应对千亿参数模型的计算复杂度,更需解决高并发、低延迟、动态负载等现实挑战。只有通过科学、贴近业务的压测体系,才能验证平台在真实场景下的极限承载能力。

本期内容将聚焦云上LLM推理服务的压测实践,帮助开发者在复杂业务流量下实现推理性能的精准调优与成本优化,为大规模AI应用落地筑牢基础。

阿里云人工智能平台PAI的推理服务PAI-EAS为LLM服务提供专业的压测方案,支持固定并发测试、固定请求速率测试(每秒请求数)、极限吞吐测试等多种模式。服务可根据需求模拟测试数据,帮助用户快速创建压测任务并一键执行。同时,系统可自动生成TTFT、TPOT、TPS、ITL、E2EL等核心指标的平均值、中位数及P99数据,全面评估并横向对比LLM服务的性能表现,满足从服务调试到性能优化的全链路需求。


PAI-EAS的压测报告包含基本信息、压测配置、压测结果及压测任务监控等全方位内容。其中压测任务监控指标说明如下:

使用方式

  1. 登录PAI控制台,在页面上方选择目标地域,并在右侧选择目标工作空间,然后单击进入EAS。

  2. 切换到压测任务页签,单击添加压测任务。创建时勾选LLM服务,从而获取LLM场景定制化的压测报告。

  • 压测数据的相关配置

参数

描述

公共数据集:使用公开的ShareGPT数据集进行压测,用于评估LLM服务的性能。

输出长度

用于控制生成文本的长度,从而测试LLM服务在不同负载下的稳定性和性能。

自定义数据集:支持通过以下数据来源上传自定义数据文件进行LLM服务性能压测。

数据来源

  • 单个数据:需在单个数据文本框中输入单条压测请求数据。

  • 数据地址:在数据地址文本框中输入测试数据源的HTTP路径。

  • OSS文件:通过配置对象存储OSS路径,来获取压测文件。

  • 本地上传:本地压测文件上传到对象存储OSS路径获取压测文件。

模拟数据:配置以下参数即可生成模拟数据。

数据生成模式

支持均匀分布。

输入Token数

输入Token的长度范围,默认值均为1024。

输出Token数

输出Token的长度范围,默认值均为128。

  • 测试模式的相关配置

参数

描述

固定并发测试:设置固定的并发数,适用于测试系统在特定并发下的性能表现。

并发数

设置并发数,用来模拟并发用户数量。

压测时长(秒)

表示压测持续时间,单位为秒。

固定请求速率测试:设置固定的请求速率,适用于测试系统在特定请求速率下的性能表现。

请求速率

设置每秒发送的请求数量。

最大并发数

设置最大并发数,用来模拟并发用户数量。

压测时长(秒)

表示压测持续时间,单位为秒。

极限吞吐测试:表示一次性发送所有请求,找到推理服务能处理的最大请求速率(QPS)。适用于测试系统的极限能力。

请求样本数

表示压测过程发送的请求数量。

压测时长(秒)

表示压测持续时间,单位为秒。

单击任务名称,查看实时监控数据。

在压测任务完成后,即可在详情页中查看开篇提到的完整压测报告。

系列简介:云上AI推理平台全掌握

本系列 《云上AI推理平台全掌握》 将深度解析阿里云AI推理平台的技术架构、最佳实践与行业应用,涵盖以下核心内容:

  1. 技术全景:从分布式推理、动态资源调度到Serverless,揭秘支撑千亿参数模型的底层能力。

  2. 实战指南:通过压测调优、成本优化、全球调度等场景化案例,手把手教你构建企业级推理服务。

  3. 行业赋能:分享金融、互联网、制造等领域的落地经验,展示如何通过云上推理平台加速AI业务创新。

无论您是AI开发者、架构师,还是企业决策者,本系列都将为您提供从理论到实践的全方位指导,助力您在AI时代抢占先机。让我们一起探索云上AI推理的无限可能,释放大模型的真正价值!

立即开启云上 AI 推理之旅,就在阿里云人工智能平台PAI。

<think>嗯,用户想知道在魔搭社区如何对DeepSeek和通义千问这样的LLM进行微调和端部署。首先,我需要回忆一下魔搭社区的相关文档和流程。魔搭社区是阿里推出的AI模型平台,支持多种模型,包括通义千问,可能还有DeepSeek。用户可能已经有基础,但需要具体的步骤指导。 首先,模型微调通常需要准备数据集、选择框架、调整参数等步骤。魔搭社区可能提供了现成的工具或者API来简化这些步骤。需要确认魔搭是否支持直接在线微调,或者需要下载模型到本地再操作。比如,通义千问可能有特定的微调接口,而DeepSeek可能需要通过魔搭的模型库来获取。 然后是端部署的问题。端部署可能涉及将微调后的模型部署到阿里PAI平台,或者其他服务。需要了解魔搭社区是否提供一键部署的功能,或者需要用户自行配置环境、使用Docker容器等。另外,推理服务的创建和API调用也是关键步骤,用户可能需要生成API密钥,设置端点等。 还要考虑用户可能遇到的常见问题,比如数据集格式、计算资源不足、部署后的监控和维护。需要建议使用合适的数据集处理工具,推荐合适的服务器配置,以及日志和监控工具的使用。 另外,参考引用中提到的大模型应用与微调的文章,可能需要整合其中的信息,比如调用API的方式,本地部署的方法,但用户主要关注的是魔搭社区的流程,所以需要将信息集中在魔搭的特定步骤上。引用中的Qwen2.5实战指南可能涉及通义千问的微调,可以结合这部分内容。 最后,用户可能需要相关的学习资源,比如官方文档、教程链接,或者社区支持渠道。确保提供的步骤清晰,分点说明,并给出示例代码或命令,比如使用SWIFT库进行微调,使用PAI进行部署的具体命令。 总结步骤应该是:环境准备、数据准备、模型微调(包括参数设置)、端部署(PAI或ECS)、API调用、后续优化。同时,需要区分DeepSeek和通义千问在流程上的差异,如果有的话。可能还需要提到模型评估和试的步骤,确保微调后的性能符合预期。</think>### 魔搭社区 LLM 微调与端部署教程 #### 一、环境准备与模型选择 1. **魔搭平台注册与配置** - 登录[魔搭社区官网](https://modelscope.cn/),注册账号并完成实名认证 - 在「开发环境」中创建端实例(推荐选择GPU规格如V100/A10),选择PyTorch框架环境[^1] 2. **模型选择** - **通义千问**:搜索`Qwen`系列模型(如`Qwen1.5-7B-Chat`) - **DeepSeek**:搜索`DeepSeek`系列模型(如`deepseek-llm-7b-chat`) ```python # 安装魔搭SDK pip install modelscope from modelscope import snapshot_download model_dir = snapshot_download('qwen/Qwen1.5-7B-Chat') ``` #### 二、数据准备与格式转换 1. **数据集要求** - 使用JSONL格式,每条数据包含`instruction`(指令)、`input`(输入)、`output`(输出)字段 ```json {"instruction": "解释量子力学", "input": "", "output": "量子力学是..."} ``` 2. **数据预处理** ```python from modelscope.msdatasets import MsDataset dataset = MsDataset.load('your_dataset_name', split='train') ``` #### 三、模型微调实战 1. **使用SWIFT微调工具** - 魔搭推荐使用自研的SWIFT库进行高效微调[^2] ```bash pip install ms-swift swift sft \ --model_type qwen1half-7b-chat \ --dataset your_dataset \ --output_dir ./output \ --num_train_epochs 3 \ --learning_rate 2e-5 ``` 2. **关键参数说明** ```text --lora_target_modules: 指定LoRA适配器作用模块(默认q_proj,v_proj) --max_length: 设置最大序列长度(建议2048) --use_flash_attn: 启用FlashAttention加速训练 ``` #### 四、端部署方案 1. **方案一:PAI-EAS快速部署** - 在魔搭控制台选择「模型部署」->「PAI-EAS- 上传微调后的模型文件(包含adapter_config.json) - 设置实例规格(建议GPU实例如ecs.gn7i-c8g1.2xlarge) 2. **方案二:自定义API服务** ```python from modelscope.pipelines import pipeline pipe = pipeline('text-generation', './finetuned_model') # 启动FastAPI服务 import uvicorn from fastapi import FastAPI app = FastAPI() @app.post("/generate") def generate(text: str): return pipe(text) uvicorn.run(app, host="0.0.0.0", port=8000) ``` #### 五、模型调用与监控 1. **API调用示例** ```python import requests response = requests.post( "http://your-endpoint/predict", json={"text": "解释狭义相对论"} ) print(response.json()) ``` 2. **服务监控** - 在阿里控制台查看GPU利用率、请求延迟等指标 - 配置日志服务SLS记录推理日志 #### 六、优化建议 1. **性能调优** - 使用vLLM加速推理:`pip install vllm` - 启用量化部署(4bit/8bit量化) ```python from modelscope import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( './finetuned_model', device_map='auto', quantization_config={'load_in_4bit': True} ) ``` 2. **安防护** - 在API网关配置QPS限制 - 使用内容安审核服务过滤违规输出 #### 学习资源推荐 - 魔搭官方文档:[ModelScope Documentation](https://modelscope.cn/docs) - SWIFT微调教程:[GitHub - modelscope/swift](https://github.com/modelscope/swift) - 通义千问微调指南:[Qwen Fine-tuning Guide](https://help.aliyun.com/zh/modelscope/)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值