MySQL数据迁移到DM

目录

一、概述

二、迁移流程

(一)迁移流程图

 (二)流程介绍

1.需求确认

2.数据库调研

 3.迁移评估

4.移植工具选择

5.制定移植计划

6.移植实施

7.移植结果校验

8.移植后收尾工作

9.应用移植与优化

(三)移植过程

1.移植评估

(1)启动DTS工具右键点击新建工程

(2)选择评估选项,右键点击新建评估

(3)填写源库信息

(4) 选择评估的内容

(5) 指定评估的对象

 (6)右下角选择执行任务的方式,点击完成

 (7)评估完成,查看评估报告

2.迁移步骤

(1)右键迁移,选择新建迁移

 (2)点击下一步,选择MySQL迁移到DM

(3)填写MySQL源库信息

 (4)填写DM目的库信息

 (5)选择迁移选项

 (6)指定模式

(7)指定对象

 (8)右下角选择执行任务的方式,点击完成

 (9)迁移完成,查看迁移报告

 3.通过DM管理工具查看迁移后的数据


一、概述

随着国家对信创工程的日益重视,目前拥有自主知识产权的国产数据库将成为主流。DM 数据库和 MySQL 体系结构上存在差异,SQL 语法也存在一定的差异,DM 数据库针对 MySQL 做了良好的兼容性适配。本文主要介绍 MySQL 移植到达梦数据库的具体步骤、移植过程中的注意点及常见适配问题,供用户参考。

二、迁移流程

(一)迁移流程图

 (二)流程介绍

1.需求确认

移植会涉及诸多场景,如容灾备份、应用改造/替代、数据库版本升级/回退、数据库替代、业务分流等,不同的场景在数据流向、停机窗口、同步需求、数据处理等方面会有不同的需求,需要针对性地选择迁移工具和方案。

2.数据库调研

考虑迁移工具版本、驱动版本、基础环境、操作方式、对象个数、对象大小、数据量等均会影响迁移工作的开展,需要对源端和目的端数据库及服务器、业务系统进行调研,确保在满足相关需求的前提下稳定完成迁移。

确认迁移需求后,源端数据库需提前调研如下信息:

  • 环境信息。提前了解操作系统层面,确定工具能否使用可视化界面,或者端口号开放情况,可以方便在后期部署安装过程中,及时避开处理问题时的一些干扰项。主要包括对服务器、内存、CPU、网络、端口、安全策略、是否具备可视化界面等信息的调研。
  • 业务系统信息。提前了解应用系统层面信息,结合应用系统特性,为后面制定迁移策略、迁移时间评估等提供参考。主要包括对业务类型、业务运行时段、停机窗口、数据量、数据增量、并发访问量等信息的调研。
  • 数据库信息。提前了解迁移数据量、字符编码、归档保留、数据库对象、表空间等信息,为后续迁移做好规划和相关准备工作。

 3.迁移评估

达梦提供了两种工具进行迁移前源端数据库兼容性评估:

  • 数据迁移工具 DTS:提供了异构数据源之间的评估,迁移和对比功能。DM 数据迁移工具采用向导方式引导用户通过简单的图形化进行兼容性评估操作。
  • 达梦企业管理器 DEM:支持对 ORACLE、MySQL、SQL Server 等主流数据库迁移到达梦数据库进行在线采集评估和自动转化,并提供兼容报告。

除此之外,需要人工对大表、大字段表是否单独迁移进行评估及确定如何配置大表、大字段表的迁移策略。

4.移植工具选择

达梦公司提供了三种移植工具:数据迁移工具 DTS、数据复制软件 DMDRS 和数据集成软件 DMDIS,可满足不同移植场景的使用需求。

5.制定移植计划

根据需求分析和数据库调研,结合每个应用系统的具体要求,选择合适的迁移工具,基于数据迁移的基本原则和迁移工具评估结果,制定合理的移植计划避免任何可能遗漏的步骤,保障迁移工作的稳定实施。

6.移植实施

对于异构数据库移植到达梦,在正式迁移前,需要根据源端数据库的相关调研信息,对目的库的实例参数、表空间、用户等进行配置,提高达梦对于 MySQL 数据库的兼容性,保障后续移植工作稳定进行。

同时,达梦数据库的迁移工具均具有自动转换功能。大多数情况下,可通过相关迁移工具进行对象和数据移植,但由于异构数据库间语法并非 100% 兼容,少量数据则需要进行手动移植。

7.移植结果校验

<think>我们正在处理用户的问题:将Hive数据库中的数据迁移到达梦数据库DM)。根据引用内容,我们有一些关于数据迁移工具的信息,特别是引用[2]提到了SQLines数据迁移工具,支持多种数据库迁移,但未明确提到Hive到DM迁移。然而,用户的需求是Hive到DM。 首先,我们需要明确Hive和DM数据库的特点: - Hive是建立在Hadoop上的数据仓库工具,通常用于处理大规模数据集,它使用HDFS存储数据,并提供类SQL的查询功能(HQL)。 - 达梦数据库DM)是国产关系型数据库,支持标准SQL。 迁移步骤通常包括: 1. 数据抽取:从Hive中提取数据。 2. 数据转换:将数据转换为适合DM的格式(包括数据类型转换、结构调整等)。 3. 数据加载:将转换后的数据加载到DM数据库中。 由于引用中没有直接提到Hive到DM迁移工具,我们可以考虑以下方法: 方法1:使用中间文件(如CSV) - 将Hive表导出为CSV文件(或文本文件)。 - 使用DM的加载工具(如dmfldr)将CSV文件导入DM。 方法2:使用Sqoop工具(但Sqoop通常用于Hadoop与关系型数据库之间的数据传输,支持从Hive导出到关系型数据库,但需要确认是否支持DM) - 由于Sqoop默认支持MySQL、Oracle等,对于DM,可能需要使用Sqoop的通用JDBC连接器,并编写相应的JDBC驱动。 方法3:使用ETL工具(如Kettle) - Kettle支持多种数据库,包括Hive和DM。可以配置Hive输入和DM输出,进行转换和加载。 方法4:使用数据库自带的迁移工具(如DM的DTS工具) - 达梦数据库提供了数据迁移工具DTS(Data Transfer Service),它支持多种数据源,但需要确认是否支持Hive。 根据引用[3],我们知道Hive的元数据存储在MySQL中,但实际数据存储在HDFS上。因此,迁移数据时,我们主要关注的是Hive表中的数据本身。 具体步骤(以使用中间文件为例): 1. 从Hive导出数据: - 使用Hive的INSERT OVERWRITE LOCAL DIRECTORY命令将数据导出为文本文件(例如CSV格式)。 - 示例: ```sql INSERT OVERWRITE LOCAL DIRECTORY '/tmp/hive_export' ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' SELECT * FROM your_table; ``` 注意:如果数据量很大,可能需要分多个文件导出。 2. 在DM数据库中创建目标表: - 根据Hive表结构在DM中创建相应的表,注意数据类型转换(例如,Hive的STRING对应DM的VARCHAR,Hive的INT对应DM的INT等)。 3. 使用DMdmfldr工具导入数据: - dmfldr是DM提供的高性能数据加载工具。 - 编写控制文件(.ctl),指定数据文件和目标表。 - 示例控制文件内容: ``` OPTIONS( DIRECT=TRUE, ERRORS=100 ) LOAD DATA INFILE '/path/to/exported_file.csv' INTO TABLE target_table FIELDS TERMINATED BY ',' TRAILING NULLCOLS ( col1, col2, ... ) ``` - 运行dmfldr命令: ```bash dmfldr userid=username/password@host:port control='/path/to/control.ctl' ``` 注意事项: - 字符集问题:确保Hive导出文件的字符集与DM数据库的字符集一致(通常使用UTF-8)。 - 数据类型映射:需要仔细检查Hive和DM的数据类型,必要时进行转换。 - 数据量:如果数据量很大,可以考虑分批导出和导入,或者使用并行加载。 - 特殊字符:如果数据中包含分隔符,需要处理转义。 另外,引用[1]中提到源端包括Hive,目的端包括MySQL等,但未明确提到DM。不过,我们可以参考其迁移思路。 如果用户需要更自动化的工具,可能需要寻找或开发特定的迁移工具。或者,如果用户有开发能力,可以编写脚本(如使用Python的PyHive连接Hive,使用DM的Python驱动连接DM)进行迁移。 相关问题: 1. 在迁移过程中如何处理Hive和DM之间的数据类型差异? 2. 使用中间文件迁移时,如何保证数据的一致性和完整性? 3. 是否有直接支持Hive到DM的ETL工具? 根据引用内容,我们没有直接找到Hive到DM迁移工具,但上述方法在实践中是可行的。 最后,生成相关问题供用户进一步了解。</think>### Hive数据库迁移至达梦数据库DM)方案 #### 迁移步骤 1. **数据导出(Hive端)** 使用Hive的`INSERT OVERWRITE`命令将数据导出为文本文件(推荐CSV格式): ```sql INSERT OVERWRITE LOCAL DIRECTORY '/tmp/hive_export' ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' SELECT * FROM your_table; ``` 需注意: - 字符集统一为`UTF-8`(DM默认字符集) - 处理特殊字符(如逗号、换行符) 2. **数据类型映射** Hive与DM的数据类型需手动转换(部分关键映射): | Hive类型 | DM类型 | 说明 | |------------|--------------|-----------------------| | `STRING` | `VARCHAR` | 按需指定长度 | | `INT` | `INTEGER` | | | `BIGINT` | `BIGINT` | | | `DOUBLE` | `DOUBLE` | | | `DECIMAL` | `DECIMAL` | 需指定相同精度 | | `TIMESTAMP`| `DATETIME` | 格式化为`YYYY-MM-DD HH:MM:SS` | 3. **数据加载(DM端)** 使用DM的**高性能加载工具`dmfldr`**: ```bash dmfldr USERID=username/password@localhost:5236 CONTROL='/path/to/control.ctl' ``` **控制文件示例(`control.ctl`)**: ```plaintext OPTIONS(DIRECT=TRUE, ERRORS=100) LOAD DATA INFILE '/tmp/hive_export/000000_0' INTO TABLE target_table FIELDS TERMINATED BY ',' (col1, col2, col3) ``` #### 关键注意事项 1. **元数据迁移** - Hive表结构需手动转换为DM的DDL语句 - 索引、约束需在DM中重建(如主键、唯一约束) - 分区表需转换为DM的分区语法(DM支持RANGE/LIST分区) 2. **性能优化** - 大表分批导出:通过`WHERE`条件拆分数据 - 禁用DM事务日志:加载前执行`SP_SET_PARA_VALUE(1, 'UNDO_RETENTION', 0);` - 并行加载:分割导出文件,多任务并发执行 3. **数据一致性验证** ```sql -- Hive端行数统计 SELECT COUNT(*) FROM hive_table; -- DM端验证 SELECT COUNT(*) FROM dm_table; -- 随机抽样对比 SELECT * FROM dm_table SAMPLE(100); ``` #### 备选方案 - **ETL工具**: 使用Kettle(Pentaho)配置**Hive Input** + **DM Output**组件,实现可视化转换(需加载DM的JDBC驱动)[^3]。 - **编程迁移**: 通过PyHive读取Hive数据,用DM Python驱动(`dmPython`)写入,示例: ```python from pyhive import hive import dmpython as dm # 从Hive读取 hive_cursor = hive.connect('hive_server').cursor() hive_cursor.execute('SELECT * FROM table') # 写入DM dm_conn = dm.connect(user='sysdba', password='xxx', server='localhost:5236') dm_cursor = dm_conn.cursor() dm_cursor.executemany("INSERT INTO dm_table VALUES (?,?)", hive_cursor.fetchall()) ``` #### 常见问题处理 | 问题 | 解决方案 | |---------------------|-----------------------------------| | 中文乱码 | 确保Hive导出时指定`-Dfile.encoding=UTF-8` | | 日期格式异常 | 用`TO_DATE()`函数显式转换 | | 空值处理不一致 | DM端配置`NULLIF`条件 | | 大对象(BLOB)迁移 | 转换为Base64编码或分块传输 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值