多模态特征表示和融合

多模态机器学习主要有五个方面的工作

1.Representation 主要任务是学习如何更好的提取和表示多模态数据的特征信息,以利用多模态数据的互补性
2.Translation 主要任务是如何将数据从一种模态转换(映射)到另一种模态
3.Alignment 主要任务是识别在两种或更多不同模态的(子)元素之间的直接关系
4.Fusion 主要任务是将来自两种或两种以上模态的信息结合起来进行预测
5.Co-learning 协同学习是在不同模态数据、特征和模型之间转移知识

多模态特征表示(representation)

对原始数据提取一个好的特征表示一直是机器学习关注的重要问题,好的特征表示主要有平滑性、时间和空间一致性、稀疏性和自然聚类等特性。特征表示代表了一个实体数据,一般用张量来表示。实体可以是一个图像,音频样本,单个词,或一个句子。多模态的特征表示是使用来自多个此类实体的信息,主要存在的问题有:(1)如何组合来自不同模态的数据 (2)如何处理不同模态不同程度的噪音 (3)如何处理缺失数据。

多模态表示有两种:联合特征表示(Joint representations)和协同特征表示(coordinated representations)。联合特征表示将各模态信息映射到相同的特征空间中,而协同特征表示分别映射每个模态的信息,但是要保证映射后的每个模态之间存在一定的约束,使它们进入所谓的协同空间。具体模式如下图:
在这里插入图片描述
联合特征表示
在这里插入图片描述
协调特征表示

联合特征表示

联合特征表示主要用于在训练和测试阶段都是多模态数据的任务。联合表示最简单的例子是对单个模态数据特征进行串联。相对更复杂的方法有:神经网络、概率图模型和序列模型。

神经网络(Neural networks)

神经网络已是一种常用的的单模态数据特征提取方法。广泛用于视觉、听觉和文本数据,并且越来越多地用于多模态领域。简单而言,应用神经网络构造多模态特征表示时,每个模态数据都分别经过几个单独的神经网络层,然后经过一个或多个隐藏层将模态映射到联合空间,得到联合特征。最后将联合特征再通过多个隐藏层,或直接用于最终的预测。这类神经网络模型可以通过端到端的训练。另外,在神经网络方法中,多模态表示学习和多模态融合之间并没有明确的界限。

基于神经网络的联合特征表示的主要缺点在于:(1)神经网络的训练依赖大量数据(2)神经网络模型无法自动处理缺失数据(3)深度神经网络训练难度很大,很难收敛

概率图模型(Probabilistic graphical models)

最流行的基于概率图模型的特征表示方法是深度玻尔兹曼机器(DBM),与神经网络类似,模型是通过堆叠受限玻尔兹曼机器(RBM)形成。DBM的优势在于它们不需要有监督数据进行训练。此外,DBM可以很好的处理缺失数据。DBM的缺点在于需要消耗巨大的计算成本。

序列特征表示模型(Sequential Representation)

序列特征表示主要用于可变长度的序列的场景,比如句子、视频或音频流。序列多模态特征表示主要用的是循环神经网络(RNNs)及其变体,如长短期记忆(LSTMs)网络。早期的研究工作主要将RNNs构造多模态特征表示使用在AVSR上。它们也被用于情感识别和人类行为分析。

协同特征表示

协同特征表示是为每个模态学习单独的特征提取模型,通过一个约束来协同不同的模态,更适合于在测试时只有一种模态数据的任务,如:多模态检索和翻译。这部分主要分为基于相似性的模型和结构化协调空间模型。

基于相似性的模型

相似模型的目标主要是最小化协调空间中不同模态之间的距离。例如,模型需要让表示“汽车”单词和汽车图像特征之间的距离要小于“飞机”单词的特征和汽车图像特征之间的距离。

结构化协调空间模型

但结构化协调空间模型在模态之间相似性的基础上强制附加其他约束。这种约束视不同的任务而定。

多模态融合(fusion)

多模态融合是将来自多种不同模态的信息进行整合,用于分类任务或回归任务。值得注意的是,在最近的工作中,对于像深度神经网络这样的模型,多模态表示和融合之间的界限已经模糊了,其中表示学习与分类或回归目标交织在一起

多模态融合的优势

1.对于同一任务,能够应用多种模态的数据,可以做出更鲁棒的预测
2.模态之间可能会存在互补的信息
3.当其中一种模态数据缺失时,多模态系统仍然可以运行,例如,当人不说话时,从视觉信号中识别情绪。

多模态融合的应用

多模态融合有着非常广泛的应用,包括视听语音识别(AVSR)、多模态情感识别、医学图像分析、多媒体事件检测。

多模态融合方法类型

模型无关的方法(Model-agnostic approaches)

模型无关的方法是指在多模态融合时不直接依赖于特定的机器学习方法,主要优点是可以使用任何单模态下的分类和回归算法。主要可分为早期融合、晚期融合和混合融合。

1.早期融合方法是在提取了各模态的特征后,立即进行融合,例如最常见的方法是对特征进行简单的连接操作。早期融合方法学习利用了每个模态低水平特征之间的相关性和相互作用,由于只需要单一模型的训练,使得早期融合方法的训练相对更容易些。

2.晚期融合方法是对每种模态单独训练一个模型,而后采用某种融合机制对所有单独模态模型的结果进行集成。常用的融合机制有平均方法,投票方法,基于信道噪声和信号方差的加权方法,训练融合模型等。由于晚期融合方法是针对不同的模态训练不同的模型,因而可以更好地对每种模态数据进行建模,从而实现更大的灵活性。此外,当存在某个模态数据缺失时,一般不会导致模型难以训练。不过值得注意的是,后期融合方法本质上忽略了模态之间的低水平交互作用。

3.混合融合是对以上两种方法的结合

基于模型的方法(Model-based approaches)

基于模型的融合方法主要有三种:基于内核的方法(Multiple kernel learning)、概率图模型(Graphical models)和神经网络模型(Neural networks)。

1.Multiple kernel learning(MKL)方法是对内核支持向量机(SVM)的扩展,主要思想是对不同模态的数据使用不同的内核,灵活的选择多kernel可以更好的融合异构数据。该方法的主要优势是MKL的损失函数是凸函数,可以得到全局最优解。MKL的主要缺点是在测试期间依赖于训练数据(支持向量),存在测试速度慢和内存占用大的问题。

2.Graphical models主要可以分为两大类:生成模型和概率模型。早期使用概率图模型进行多模态融合的的方法主要是生成模型,如耦合和阶乘隐马尔可夫模型以及动态贝叶斯网络.。后来的研究中,判别模型更受欢迎,例如条件随机场(CRF),结合图像描述的视觉信息和文本信息,利用CRF模型融合多模态信息,从而更好地分割图像。Graphical models的优势主要是它们能够很好地利用数据的空间和时间结构,适合于时间序列数据建模,而且模型的可解释性较好。

3.Neural Networks已经被广泛用于多模态融合的任务。使用神经网络进行多模态融合最早应用于AVSR的研究。目前使用场景有:问答系统,手势识别,情感分析和视频描述生成。神经网络方法在多模态数据融合方面的主要优势有:(1)对于海量数据有较强的学习能力 (2)多模态特征提取部分和多模态融合部分可以进行端到端的训练(3)能够学习其他方法难以处理的复杂决策边界。神经网络方法的主要缺点就是可解释性差以及需要依赖大量高质量的训练数据。

多模态融合的挑战

1.不同模态的信息在时间上可能不是完全对齐的,同一时刻有的模态信号密集,有的模态信号稀疏。
2.融合模型很难利用模态之间的互补性
3.不同模态数据的噪音类型和强度可能不同

<think>嗯,用户想了解多模态特征的张量融合方法或实现。首先,我需要回顾一下多模态融合的基本概念。根据引用[2],多模态融合主要处理图像、文本、语音等不同模态的信息,利用它们的冗余性互补性。张量融合应该属于特征融合的一种,但比简单的拼接更复杂。 用户提到的张量融合可能涉及到高阶张量操作,比如外积。比如,引用[4]提到特征融合的拼接方法有缺点,而张量融合可能通过外积来捕捉不同模态间的交互。例如,将两个模态的特征向量做外积,生成一个矩阵,这样可以捕获元素之间的交互信息。 接下来需要考虑具体的实现方式。例如,如何将多个模态的特征转换为张量,然后进行融合。可能需要使用深度学习框架中的张量操作,比如PyTorch的einsum或者reshape。比如,模态A的特征是n维,模态B是m维,外积后得到n×m的张量,然后展平拼接其他模态的组合。 另外,还要注意张量融合的优缺点。优点是能捕捉细粒度交互,适合模态间关联性强的情况。但计算量大,可能过拟合,需要降维处理,比如用全连接层压缩。 然后,用户可能需要具体的代码示例。例如,使用PyTorch实现双模态张量融合。步骤包括特征投影到相同维度,计算外积,展平后输入分类器。代码中要注意维度变换计算效率。 还需要考虑多模态融合的其他方法,如Modal Attention(引用[1]),基于注意力机制加权不同模态的重要性。可能对比张量融合其他方法的适用场景。 最后,生成相关问题时要覆盖实现细节、优缺点、应用场景、优化方法等,帮助用户深入理解。</think>### 多模态特征张量融合方法及实现 #### 一、张量融合的核心思想 张量融合(Tensor Fusion)是通过高阶张量运算捕捉多模态特征间**细粒度交互关系**的方法。其核心是将不同模态的特征向量通过**外积(Outer Product)**生成多维张量,从而建模模态间元素级别的组合关系。例如,对于双模态特征$v_1 \in \mathbb{R}^d$$v_2 \in \mathbb{R}^d$,其外积张量可表示为: $$T = v_1 \otimes v_2 \in \mathbb{R}^{d \times d}$$ 该张量包含$d^2$个交互项,能完整描述两种特征的组合可能性[^4]。 #### 二、实现步骤(以PyTorch为例) ```python import torch # 输入特征:模态A (batch_size, 128),模态B (batch_size, 256) feat_a = torch.randn(32, 128) feat_b = torch.randn(32, 256) # 步骤1:特征投影到相同维度 proj_a = torch.nn.Linear(128, 64)(feat_a) # (32,64) proj_b = torch.nn.Linear(256, 64)(feat_b) # (32,64) # 步骤2:添加单位1维度以包含单模态信息 ext_a = torch.cat([torch.ones_like(proj_a), proj_a], dim=1) # (32,65) ext_b = torch.cat([torch.ones_like(proj_b), proj_b], dim=1) # (32,65) # 步骤3:计算外积张量 fusion_tensor = torch.einsum('bi,bj->bij', ext_a, ext_b) # (32,65,65) # 步骤4:展平并输入分类器 flattened = fusion_tensor.view(32, -1) # (32,4225) output = torch.nn.Linear(4225, 10)(flattened) ``` #### 三、技术优势与局限 **优势:** 1. 显式建模**跨模态特征交互**,捕捉元素级组合模式 2. 兼容单模态特征(通过添加单位1维度) 3. 适合需要**细粒度关联分析**的场景(如情感识别、视觉问答)[^3] **局限:** 1. 计算复杂度呈**指数增长**($d^n$,n为模态数) 2. 需要大量数据避免过拟合 3. 实际应用中常需**降维处理**(如使用全连接层压缩维度)[^4] #### 四、改进方向 1. **低秩近似**:使用张量分解(CP分解/Tucker分解)降低维度 $$T \approx \sum_{r=1}^R u_r \otimes v_r \otimes w_r$$ 2. **动态权重**:结合注意力机制(如Modal Attention[^1])动态调整模态权重 3. **层次化融合**:先进行双模态融合,再逐步融合多模态
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值