
Python系统
文章平均质量分 91
可视化系统或者管理系统
python编程狮
分享制作的各种Python项目和实训
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于可视化分析的房地产市场监测与预警机制,展示二手房的价格趋势、区域分布、户型结构等关键信息
网络爬虫(Web Crawler),也称为网络蜘蛛(Web Spider),是一种在网络上自动地爬取信息的程序,主要作用是在大量的数据中按一定规则进行爬取和存储。其详细处理流程如图:2-1所示。图2-1 爬虫流程图。原创 2025-08-06 21:12:38 · 791 阅读 · 0 评论 -
基于python的二手车价格预测及可视化系统,采用集成学习算法和diango框架
对于二手车市场数据分析与可视化系统,需要添加所需要的数据信息,对于添加信息,需要管理员进入添加界面,根据选框的内容进行填写所要添加的数据信息,信息输入完成后判断数据信息是否符合要求,符合要求则添加完成,管理员所添加的信息不符合要求,则需要返回到第一步,重新输入数据信息,再进行判断操作,如图4.4所示。上牌时间分析柱形图实现类似,数据源为按年份分组的licenseDate字段,视图层使用annotate聚合,前端通过option.xAxis.data绑定年份列表,series.data绑定对应数量。原创 2025-08-05 21:53:33 · 1356 阅读 · 0 评论 -
基于机器学习的二手房信息可视化及价格预测系统设计与实现
该页面实现基于决策树算法的房价预测功能,前端通过LayUI表单收集12项特征参数:楼层等级(高/中/低)、电梯有无、地铁有无、住宅类型(板楼/塔楼等)、装修等级(毛坯至豪华)、房屋朝向、楼层数、厅室数量、面积、关注人数。其中二手房数据采集功能,爬虫程序从安居客平台抓取房源信息,包含ID、房源名称、小区、地址、房价等字段。平台管理员、平台用户选择不同的条件筛选,如二手房房源不同地区城市、二手房的标题、小区名称、建造时间、二手房房子的标签、ID等信息,让其筛选出某个区域、城市、房价的情况,辅助用户做相关决策。原创 2025-08-04 19:58:52 · 958 阅读 · 0 评论 -
基于机器学习的Web应用漏洞分析与预测系统,使用django框架,三种机器学习模型
按照年份分组获取不同年份的漏洞个数分组命令是groupby(df,“发布时间”),“发布时间”指年份,获得的结果是一个Series对象,通过map和values函数可以获取years列中的所有元素,结果是['2017','2018',‘2019’],对应的漏洞的个数可以通过count()方法获取,结果分别是['46',‘45’,‘64'],通过传递render将数据传递给salary.html模板,在该模板中可以使用这些数据绘制柱状图进行可视化分析。以柱状图的形式展示这些数据,用户便于对模型效果进行对比。原创 2025-08-03 22:53:12 · 1034 阅读 · 0 评论 -
基于时间序列算法的超市商品销量的分析与预测系统,采用django+echarts+ARIMA+LSTM算法
随机波动是时间序列中不可避免的一部分。表5-6的结果也显示,LSTM模型的MSE和MAE都远小于单个的ARIMA模型,说明ARIMA和LSTM的模型的拟合效果优秀。对模型进行训练,可视化训练集数据如图5-5,发现拟合效果并不是特别的好,上升趋势拟合效果不错,但是季节性的拟合效果不太理想,再将ARIMA预测得到一阶差分可视化如图5-6,同样的拟合效果一般,将拟合出来的一阶差分数据经过累加,转换到测试集数据,将测试集数据与预测数据可视化,得到图5-7,在训练集当中的问题在测试集更明显,季节性并没有很好的拟合。原创 2025-08-03 22:42:21 · 1068 阅读 · 0 评论 -
基于机器学习的健身房会员健康风险分析可视化系统,flask框架,随机森林模型实现预测
最终,实现健康风险的可视化结果(不同健康风险会员的比例、会员健康风险的变化趋势、模型预测准确度的评估),以图表方式展示不同健身会员的健康风险分布结果、各健康风险等级的范围、风险趋势分析结果(比例分布图、数据统计表),以满足健身房高、中、低健康风险用户特征提取及分类的需求,同时根据平台预测的健康风险模型结论和建议对会员进行个性化训练与指导计划提供反馈,从而在健身房管理人员的指导下,为健康风险较高的用户提供合理的干预或治疗措施以预防疾病发生,帮助健身房进行健康风险的精准化和个性化管理,提升健身房自身运营效率。原创 2025-08-01 19:46:42 · 819 阅读 · 0 评论 -
python毕设案例:基于机器学习的民宿价格预测分析与研究,技术使用django+随机森林算法/多元线性回归算法+echarts可视化
此方法能够高效抓取并存储多个页面的酒店信息,最后通过使用navicat数据库可视化工具导入的方式,将采集好的数据手动导入到数据库,如图4.1所示数据采集流程,图4.2所示导入的数据库信息,如表4.1所示数据存入数据库的表结构。对于系统的安全性的第一关,就是用户想要进入系统,必须通过登录窗口,输入自己的登录信息才可以进行登录,用户输入的信息准确无误后才可以进入到操作系统界面,进行功能模块的相对应操作,如果用户输入的信息不正确,则窗囗出现提示框,用户登录失败,返回到第一步进行重新输入,如图5.3所示。原创 2025-07-31 12:34:16 · 1049 阅读 · 0 评论 -
python毕设高分案例:基于机器学习的抑郁症数据分析与预测系统,flask框架,算法包括XGboost模型、梯度提升树模型等
传统的数据处理和分析方法在面对如此庞大且复杂的医学数据时,显得力不从心。医生难以从海量数据中快速提取关键信息,导致诊断效率低下,也可能遗漏重要线索影响诊断准确性。同时,医院管理者在进行资源配置决策时,缺乏直观有效的数据支持,难以合理分配有限的医疗资源,造成资源浪费或短缺。大数据可视化技术的出现为解决这些问题提供了新的契机。它能将抽象、复杂的数据转化为直观易懂的图表、图形或地图等可视化形式,让医生和管理者能够更清晰地洞察数据背后的规律和趋势。原创 2025-07-30 23:03:47 · 771 阅读 · 0 评论 -
python优秀案例:基于机器学习算法的景区旅游评论数据分析与可视化系统,技术使用django+lstm算法+朴素贝叶斯算法+echarts可视化
1 绪论1.1 研究背景中国旅游经济随着全球旅游业发展走出了新的道路,张家界的国家森林公园作为中国第一个被联合国教科文组织评审通过的世界自然遗产地、国家5A级旅游景区是吸引海内外游客旅游休闲和文化消费的热点地区。互联网和社交媒体的普及和应用使得旅游者发布的大量旅游评论的产生,他们以非结构化、非正式的信息形式记录了人们对旅游景区中服务、景观、设施、文化等方面的主观反应,具有重要的旅游体验价值,可以帮助分析和解决游客提出的管理需求,改善管理条件[1]。原创 2025-07-29 19:59:54 · 2436 阅读 · 0 评论 -
python毕业设计案例:基于python django的抖音数据分析与可视化系统,可视化有echarts,算法包括lstm+朴素贝叶斯算法
数据采集流程图如图4.1所示。近年来,短视频平台的迅猛发展催生了大量用户生成内容,抖音作为行业领先的短视频平台,积累了海量用户数据。预测模块的流程主要分为数据准备、模型训练、预测生成3步,从数据库中准备数据,作为分析的基础,使用LSTM算法训练数据,并经过数据的预处理、词向量转换等方法,划分数据集和训练集进行训练,训练好的模型进行保存。用户信息E-R图如图4.5所示,E-R图描述了“用户”实体及其相关属性,包括:ID、账号、密码、头像、姓名、性别、手机号和年龄,用于表示系统中用户的基本信息结构。原创 2025-07-28 21:24:07 · 1184 阅读 · 0 评论 -
毕设案例:基于python django的商品销售系统的设计与实现,包括前端和后端,有协同过滤算法,后端有增删改查和数据分析
1.1 研究背景随着全球化电商的蓬勃发展,全球电子商务带动了消费者对网上购物的需求持续增长,并且对于免税商品的消费需求呈现出强劲的发展态势。免税商品具有的价格优势和品质追求,正好符合了当下广大消费者追求高品质商品生活的要求。1.2 研究意义基于Python的免税网购系统具有很大的现实意义,为人们的网上购物方式提供了一个更新颖的购物体验,消费者无法直接线下购买自己所需商品时,可在系统上购买到琳琅满目的免税产品,满足日益增长的消费需求,为免税销售商提供强大的管理库存、规划策略的方式。原创 2025-07-25 20:15:47 · 933 阅读 · 0 评论 -
优秀案例:基于python django的智能家居销售数据采集和分析系统设计与实现,使用混合推荐算法和LSTM算法情感分析
应用协同过滤与内容推荐的融合推荐算法,实现基于用户行为、商品属性等的商品推荐功能,使系统能更好地推荐商品,真正实现商品内容的推荐。本文所研究设计的智能家居销售数据采集与分析系统主要是为了提升数据的采集效率,并且实现及时采集到的线上电商平台及线下店面的多重渠道销售数据的采集与分析,精确地进行相关的数据采集并应用先进的数据挖掘算法进行分析挖掘,取得数据中潜藏的数据价值信息,例如一些数据分析所形成的销售趋势预测结果以及一些相应的消费者画像结果等,并在后续的应用中针对企业的智能家居能够取得促进发展的目的。原创 2025-07-25 19:54:23 · 1591 阅读 · 0 评论 -
基于python django的农业可视化系统,以奶牛牧场为例
国内学者研究涉及畜牧行业智能化发展和畜牧业可持续发展,以精准化的饲喂机械研发和动物营养饲喂的种养技术模式创新为例,依托自动化降低肉牛种养规模化作业的个体性,优化畜舍环境控制技术节省资源能源消耗,但存在粪污资源化处置技术以及种养业功能紧密耦合对接问题等制约,同时研究方法以技术综合集成研究和案例实证研究为主,注重实用技术的运用,但依然存在单一渠道的数据收集,缺乏评估精准技术依托,导致研究数据搜集的维度单一,数据分析的精细度和预测的准确性不高。原创 2025-07-24 21:30:47 · 1035 阅读 · 0 评论 -
毕业设计:基于python flask的出租车运营数据可视化分析系统
本系统基于Python Flask框架构建了一套出租车运营数据可视化分析平台,整合Bootstrap前端框架、ECharts可视化组件和MySQL数据库,实现了多维度的出租车业务数据洞察。系统通过Flask后端高效处理数据查询与接口响应,采用Bootstrap实现响应式页面布局,结合ECharts丰富的图表类型进行动态数据展示,MySQL数据库稳定存储结构化业务数据。核心功能模块包含:1)小费与行程距离散点图分析,揭示小费支付与行驶距离的关联规律;2)支付方式环形图直观呈现信用卡/现金等支付渠道占比;3)费原创 2025-07-24 20:28:14 · 542 阅读 · 0 评论 -
基于Python flask的常用AI工具功能数据分析与可视化系统设计与实现,技术包括LSTM、SVM、朴素贝叶斯三种算法,echart可视化
Flask是以Werkzeug工具包和Jinja2模板引擎作为基础的轻量级PythonWeb框架。微框架就是功能模块不臃肿、尽量保持简单的开发模式,并且能够通过扩展机制增添新功能,以实现尽可能大的灵活性。Flask秉承清晰胜于巧妙的设计理念,使程序员对项目组织形式有更大控制权。原创 2025-07-23 19:24:51 · 1231 阅读 · 0 评论 -
基于网络爬虫的在线医疗咨询数据爬取与医疗服务分析系统,技术采用django+朴素贝叶斯算法+boostrap+echart可视化
用户可以点击选择不同的科室查看评分数据的可视化分析界面,在该界面的中间有一个下拉选择框,可以选择科室后再点击“分析”,页面会将所选的数据向服务器发起请求,等待服务器处理请求,加载数据的过程中,页面会显示“正在加载”的提示,提升用户的体验度,等数据加载完后,ECharts就会绘制出一个圆环图,并且直观显示出各个评分类别所占的比值大小,饼图为不同颜色表示数据类别,评分分析界面图如图6.7所示,主要代码如图6.8所示。国外的在线医疗咨询数据采集及医疗服务分析系统的研究,主要是围绕提高临床决策能力和诊疗质量。原创 2025-07-22 19:15:39 · 1520 阅读 · 0 评论 -
基于python django深度学习的中文文本检测+识别,可以前端上传图片和后台管理图片
科技与互联网快速发展背景下,文字作为信息交流核心展现丰富多样性传统的纸质书写不再是信息流传的唯一途径,街道指示牌,电子显示屏以及广告牌等新媒介,大量承载着丰富的文字信息,这些信息常以图像形式出现在我们周边的环境里。于是,利用计算机技术达成对图像里文字内容的自动识别,该技术渐渐成了推进社会生活便捷化的关键所在。本文针对计算机视觉领域的目标检测和识别,尤其是自然图像中文字要素检测识别的问题,鉴于图像文字由于多角度、字体多样以及复杂的背景等特性,整个识别过程包括对文字区域识别和对文字内容的分析过程两部分。原创 2025-07-22 18:55:36 · 920 阅读 · 0 评论 -
基于Python flask的电影数据分析及可视化系统的设计与实现,可视化内容很丰富
基于Python的电影数据分析及可视化系统是一个应用于电影市场的数据分析平台,旨在为广大电影爱好者提供更准确、更详细、更实用的电影数据。数据分析部分主要是对来自猫眼电影网站上的数据进行清洗、分类处理、存储等步骤,数据可视化则是对数据分析结果进行呈现和展示,以便用户更好地了解电影市场实况和趋势,从而更好地选择观影内容。整个系统的数据采集部分采用Requests库进行爬虫,从猫眼电影网站爬取电影数据,数据预处理采用强大的Pandas库来完成,数据存储采用Mysql数据库。原创 2025-07-21 10:52:51 · 1417 阅读 · 0 评论 -
基于python django的BOSS直聘网站计算机岗位数据分析与可视化系统,包括薪酬预测及岗位推荐,推荐算法为融合算法
Django是流行的一种PythonWeb应用框架,它包含很多功能强大实用的工具,使开发者快速开发高效可伸缩的Web应用,Django的目标是帮助开发者专注于业务逻辑,而不关心实现细节,如图2-1。原创 2025-07-21 10:32:55 · 1262 阅读 · 1 评论 -
基于Python flask的医院管理学院,医生能够增加/删除/修改/删除病人的数据信息,有可视化分析
本项目是一款基于 Python Flask 的医院管理系统,旨在为医院的医生和管理员提供高效、简洁的患者数据管理、药品信息管理、数据可视化展示及账户权限控制等功能。通过这些功能,医生能够更加便捷地管理病人的健康信息,医院能够高效地使用资源,提升整体运营效率。原创 2024-09-19 10:51:11 · 2171 阅读 · 0 评论 -
基于Python协同过滤的旅游景点推荐系统,采用Django框架,MySQL数据存储,Bootstrap前端,echarts可视化实现
随着旅游业的迅速发展,个性化旅游推荐系统成为提升用户体验和促进旅游市场增长的重要工具。本研究旨在设计并实现一种基于Python协同过滤的旅游景点推荐系统,结合Django框架、MySQL数据库存储、Bootstrap前端框架以及echarts数据可视化技术,为用户提供精准且个性化的旅游推荐服务。原创 2024-07-09 10:34:59 · 2004 阅读 · 0 评论 -
基于Django、Bootstrap的电影推荐系统,算法基于用户的协同过滤算法,有爬虫有可视化后台
基于Django和Bootstrap的电影推荐系统结合了用户协同过滤算法,通过爬虫技术获取电影数据,并在可视化后台展示推荐结果。该系统旨在提供个性化的电影推荐服务,帮助用户发现符合其喜好的电影。用户协同过滤算法是一种常用的推荐算法,通过分析用户的历史行为数据,如电影评分和浏览记录,来推荐类似兴趣的电影给用户。结合Django框架,系统可以实现用户注册、登录、电影推荐等功能,提升用户体验。通过Bootstrap框架,系统可以实现响应式设计,确保在不同设备上的良好展示效果。原创 2024-06-14 16:48:02 · 565 阅读 · 0 评论 -
基于朴素贝叶斯算法的微博舆情监控系统,flask后端,可视化丰富
微博作为中国最大的社交媒体平台之一,汇聚了海量用户生成的文本数据,承载着丰富的社会信息和舆论动向。随着互联网的快速发展,人们对于利用这些数据进行舆情分析和预测的需求日益增加。在这种情况下,以Python为根基的微博情绪分析与可视化微博舆情分析成为了研究的热门领域。Python作为一种功能强大且易学易用的编程语言,拥有丰富的数据处理和分析库(如Pandas、NumPy、Matplotlib等),为研究人员提供了便利的工具用于处理和分析大规模的文本数据。原创 2024-05-21 11:39:25 · 772 阅读 · 0 评论 -
基于Django的今日头条数据分析可视化系统,有后台,有增删改查,实现多用户登录
数据可视化系统能够展示详细的分析图表,可以直观地揭示了不同新闻类别下文章内容的吸引力及用户行为的差异,能够提高文章作者对用户偏好的理解,从而使平台能更有效地策划内容以吸引并维持用户的兴趣。系统的需求分为三个方面:数据存储、数据查询和数据可视化。数据存储方面是将爬虫获取到的数据进行处理后存入到数据库。数据可视化方面是将处理好的数据以可视化形式展示。原创 2024-05-21 10:02:49 · 1009 阅读 · 0 评论 -
基于Python的招聘网站爬虫及可视化的设计与实现
本次论文完成了对于基于Python的招聘网站的爬虫及可视化,系统基本上达到了任务要求,需要参考Java、Python、Php语言的相关岗位招聘信息的计算机应聘人员可以根据自身需求,查看薪资待遇的水平分布、企业的主要招聘城市和企业规模、企业主要吸引人才发放的福利、企业对应聘人员的学历及工作经验的要求,应聘者可以根据这些信息来选择自己发展空间更大的城市,看薪资是否满足自身需求,根据公司招聘要求提升自己的水平,为以后的学习找到更好的工作指明方向。为接下来的招聘网站的爬虫及可视化的详细实现打下基础。原创 2024-02-02 21:49:56 · 3460 阅读 · 3 评论