计算公式:
参数说明:
- H:输入图片高度
- W:宽度
- N:batch_size大小
- Cin:输入的通道数
- Cout卷积之后输出的通道数
- dilation:膨胀率,默认是1
- stride:步长,设置的
- kernel[0]、kernerl[1]表示kernel的长宽两个维度。
对于输入的图像长宽HW相同,则计算公式为(dilation=1):
示例:
输入一个 256 * 256 的向量,经过下面的三层卷积,套入公式计算特征图的大小:
nn.Sequential(
nn.ReflectionPad2d(3),
nn.Conv2d(4, 64, 7),
nn.Conv2d(64, 128, 4, stride=2, padding=1),
nn.Conv2d(128, 256, 4, stride=2, padding=1),
)
ReflectionPad2d(3)是以输入图像以最外围像素为对称轴,做四周的轴对称镜像填充,扩充3个单位。
以下是根据公式的计算过程:
可以看到,经过一次填充和三次卷积,大小变为了原来的1/4。