二维卷积输出特征图的计算公式

本文介绍了卷积神经网络中特征图尺寸的计算方法,包括填充(Padding)、卷积层等操作对输入图像尺寸的影响,并通过具体实例展示了如何计算经过多次卷积后的特征图尺寸。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算公式

在这里插入图片描述
参数说明:

  • H:输入图片高度
  • W:宽度
  • N:batch_size大小
  • Cin:输入的通道数
  • Cout卷积之后输出的通道数
  • dilation:膨胀率,默认是1
  • stride:步长,设置的
  • kernel[0]、kernerl[1]表示kernel的长宽两个维度。
    对于输入的图像长宽HW相同,则计算公式为(dilation=1):
    在这里插入图片描述
    示例:
    输入一个 256 * 256 的向量,经过下面的三层卷积,套入公式计算特征图的大小:
nn.Sequential(
    nn.ReflectionPad2d(3),  
    nn.Conv2d(4, 64, 7),        
    nn.Conv2d(64, 128, 4, stride=2, padding=1),
    nn.Conv2d(128, 256, 4, stride=2, padding=1),
)

ReflectionPad2d(3)是以输入图像以最外围像素为对称轴,做四周的轴对称镜像填充,扩充3个单位。
以下是根据公式的计算过程:
在这里插入图片描述
可以看到,经过一次填充和三次卷积,大小变为了原来的1/4。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值