一些常用的直方图均衡化算法

直方图均衡化(HE)是一种图像增强技术,通过映射改变图像灰度值,增加对比度。然而,HE不适合局部明暗变化大的图像。自适应直方图均衡化(AHE)通过局部区域处理改善了这个问题,但可能导致噪声放大。限制对比度自适应直方图均衡化(CLAHE)通过对比度限幅解决了这一问题,防止噪声过度放大。CLAHE通过分块、直方图裁剪和双线性插值来减小块效应,提高图像质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直方图均衡化(HE)

直方图均衡化是常用的图像增强的方法。通过一种映射改变图像中的灰度值,增加图像灰度值的动态范围从而增加图像的对比度。过度曝光的图像中的灰度值主要集中在高亮度的范围内,而曝光不足的图像中的灰度值主要集中在低亮度的范围内。使用直方图均衡化技术可以使得整幅图像的灰度值均匀分布在整个动态范围,从而增加图像的对比度,提升视觉观感。

直方图均衡化步骤:
1.统计图像中每个灰度值像素的个数
2.计算每个灰度值像素的频率,并计算累计频率
3.将图像进行映射,图像的灰度值=图像原来灰度值*累计频率

其中使用到累计频率,那么为什么使用累计频率是值得思考的问题?原因如下:
1.像素经过映射之后需要保证原来灰度值大小关系不变,即亮的区域依旧是亮的,暗的区域依旧是暗的,不能将亮的区域变为暗的。映射后图像只是增加对比度,那么使用单调递增的累计分布函数并不会改变这一点。暗处的灰度值较低,与较低的累计分布频率相乘之后依旧较低;亮处的灰度值较高,与较大的累计分布频率相乘之后依旧较高;
2.如果是8位图像,像素值的灰度值范围在0~255之间,与累计分布频率相乘之后灰度值范围不变,不会出现越界的情况。
概率知识:概率密度函数(PDF)、概率分布函数、累积分布函数(CDF)

代码实现:

//直方图均衡化 HE
bool EqualizeHist(Mat gray, Mat result)
{
	//统计0-255像素个数
	map<int, int> mp;
	for (int i = 0; i < gray.rows; i++)
	{
		uchar* ptr = gray.data + i * gray.cols;   //data Mat指针
		for (int j = 0; j < gray.cols; j++)
		{
			
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值