Dify接入Geek-AI步骤

准备工作

1、Geek Ai使用版本:V4.1.2

2、Dify使用版本:V0.12.1

过程分析

  1. 引入 Dify 模型支持:在 chat_handler.go 中增加对 Dify 模型的判断逻辑。

  2. 实现 Dify 消息发送逻辑:在 dify_handler.go 中实现 sendDifyMessage 方法,处理 Dify 的消息发送和响应处理。

  3. 实现 Dify 请求发送方法:在 dify_handler.go 中实现 doDifyRequest 方法,发送请求到 Dify 服务器。

  4. 处理 Dify 响应:在 dify_handler.go 中实现 processEvents 方法,处理 Dify 的事件流响应。

  5. 保存聊天历史:在 sendDifyMessage 方法中,调用 saveChatHistory 方法保存 Dify 的响应内容到聊天历史中。

代码实现

1. 引入 Dify 模型支持
  • 新增文件: 创建 dify_handler.go 文件,用于处理 Dify 模型的相关逻辑。

  • 修改 chat_handler.go: 在 sendMessage 方法中,增加对 Dify 模型的判断逻辑。如果 API Key 以 app- 开头,则调用 Dify 模型。

	keyId := session.Model.KeyId
	var apiKeyValue string
	h.DB.Model(&model.ApiKey{}).Where("id", keyId).Select("value").Scan(&apiKeyValue)
	if strings.HasPrefix(a
### Dify 集成 BGE-v2-m3 的使用指南 Dify 是一个开源的大型语言模型框架,支持多种模型的集成和部署。要将 BGE-reranker-v2-m3 模型与 Dify 集成,需要完成以下核心任务:模型下载、环境配置、API 调用以及接口对接。 #### 1. 环境准备 在开始集成之前,确保安装了必要的依赖库,并为模型运行提供了适当的硬件支持(如 GPU 或 CPU)。以下是推荐的环境配置: - **操作系统**:Windows 11 或 Linux。 - **Python 版本**:建议使用 Python 3.8 或更高版本。 - **依赖库**: - `numpy` - `torch`(PyTorch) - `transformers` - `dify`(或其相关 SDK) 如果是在 Windows 11 + CPU 环境下运行,需特别注意依赖库的版本兼容性[^3]。可以使用 `conda` 创建隔离环境以避免冲突。 ```bash conda create -n dify-bge python=3.9 conda activate dify-bge pip install numpy torch transformers dify ``` #### 2. 下载并加载 BGE-reranker-v2-m3 模型 由于官方脚本可能从 Hugging Face 下载模型,而网络问题可能导致失败,因此推荐从 ModelScope 下载模型[^1]。以下是具体步骤- **下载模型**: 使用 Docker 容器运行时,挂载本地缓存路径以存储模型文件。 ```bash docker run --name bge-reranker-v2-m3 \ -d --runtime nvidia --gpus all \ -v ~/.cache/modelscope:/root/.cache/modelscope \ --env "VLLM_USE_MODELSCOPE=True" \ -p 8001:8000 \ --ipc=host \ vllm/vllm-openai:latest \ --model BAAI/bge-reranker-v2-m3 \ --gpu_memory_utilization 0.9 ``` - **加载模型**: 在 Python 环境中加载模型,可参考以下代码示例: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification model_name = "BAAI/bge-reranker-v2-m3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` #### 3. 配置 Dify接入 BGE-reranker-v2-m3 Dify 提供了灵活的插件机制,允许用户自定义模型和服务。以下是接入 BGE-reranker-v2-m3 的关键步骤- **创建自定义插件**: 在 Dify 中创建一个新的插件,用于封装 BGE-reranker-v2-m3 的功能。 ```python from dify.plugins import BasePlugin class BGERerankerPlugin(BasePlugin): def __init__(self, model_name="BAAI/bge-reranker-v2-m3"): self.model_name = model_name self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name) def rerank(self, query, candidates): inputs = self.tokenizer([query] * len(candidates), candidates, return_tensors="pt", padding=True, truncation=True) outputs = self.model(**inputs) scores = outputs.logits.softmax(dim=-1)[:, 1].tolist() return sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True) ``` - **注册插件**: 将上述插件注册到 Dify 的配置文件中,确保其在系统启动时加载。 #### 4. 测试与优化 利用 BGE-reranker-v2-m3 对生成文本进行优化,可以显著提升文本质量,使其更加准确、流畅和逻辑严密[^2]。以下是一个简单的测试示例: ```python plugin = BGERerankerPlugin() query = "如何提高模型性能?" candidates = [ "增加训练数据量。", "调整超参数设置。", "使用更强大的硬件设备。", "优化模型架构设计。" ] ranked_results = plugin.rerank(query, candidates) for candidate, score in ranked_results: print(f"{candidate} -> {score}") ``` #### 注意事项 - 如果遇到网络问题,确保从 ModelScope 下载模型时网络畅通。 - 在 Windows 环境下,务必检查所有依赖库的 64 位兼容性。 - 如果模型运行缓慢,尝试调整 `--gpu_memory_utilization` 参数或优化硬件配置。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值