论文翻译:Efficient Online Segmentation for Sparse 3D LaserScans——稀疏3D激光扫描的有效在线分割

关键词:分割,三维激光,在线,深度图像,稀疏数据,点云

总结:在场景中提取单个对象的能力对于大量自主导航系统(例如移动的机器人或自主汽车)来说是关键。在动态环境中导航的这种系统需要知道可能改变或移动的对象。在大多数感知线索中,将当前图像或激光扫描预分割成单个对象是执行进一步分析之前的第一个处理步骤。在本文中,我们提出了一种有效的方法,首先从扫描中删除地面,然后分段的三维数据在一个范围内的图像表示成不同的对象。我们工作的一个重点是几百赫兹的快速执行。我们的实现有小的计算需求,使它可以在大多数移动的系统上在线运行。我们明确避免了3D点云的计算,直接在2.5D范围图像上操作,这使得每次3D扫描都能快速分割。这种方法还可以很好地处理稀疏的3D数据,这对于新型Velodyne VLP-16扫描仪等扫描仪非常重要。我们用C++和ROS实现了我们的方法,使用不同的3D扫描仪进行了彻底的测试,并将发布我们实现的源代码。我们的方法可以在帧速率,大大高于传感器,同时只使用一个单一的核心的移动的CPU,并产生高质量的分割结果。

图1:左:从Velodyne VLP-16扫描仪记录的稀疏3D范围数据生成的对象(如人、汽车和树木)的分割。颜色对应于不同的部分。右:用于实验的Clearpath Husky机器人。

1、引言

        RGB和多光谱数据中的图像分割是摄影测量图像分析、计算机视觉和遥感中的常见问题。分离三维激光测距数据中的单个物体也是移动的机器人或仪表汽车自主导航的重要任务。在未知环境中导航的自主车辆面临推理其周围环境的复杂任务,参见(GOLOVINSKIY & FUNKHOUSER,2009; HEBEL & STILLA,2008; HIMMELSBACH等人,2010年; KüUMMERLE等人,2013; STEINHAUSER等人,2008; TEICHMAN & THRUN,2012; WANG & SHAN,2009;乌尔姆等人,2008年)。可能存在限制机器人可能的动作或可能干扰机器人自身计划的对象。因此,机器人周围环境的解释是鲁棒操作的关键。虽然一些方法专注于在动态场景中找到特定对象(HANEL等人,2015; MENZE等人,2015; LEIBE等人,2008),大多数感知流水线在执行进一步的解释之前将环境分割成单独的对象。因此,我们认为需要一种有效的3D范围数据在线分割方法,因为这允许机器人直接对其周围的单个物体做出反应。这种分割应该是真实的,因为系统需要在数据可用时对其所看到的内容进行推理,以便做出适当的反应。

        从原始传感器数据中进行对象分割在动态环境中映射或操作时尤其相关。例如,在有汽车和行人的忙碌街道中,地图可能受到由环境的动态性质引起的错误数据关联的影响。在扫描配准和映射期间实现关于这些对象的更好推理并且潜在地忽略动态对象的关键步骤是将3D范围数据分割成不同的对象,使得它们可以被单独跟踪,参见(DEWAN等人,2016年)。

        除了相当昂贵的地面激光扫描仪外,还有针对移动的机器人应用的精度较低且较便宜的扫描仪。一个例子是Velodyne的16光束激光雷达,它越来越受欢迎,可以安装在相对低成本的平台上。如果我们将16波束激光雷达提供的数据与64波束变体甚至地面扫描仪提供的数据进行比较,我们观察到垂直角分辨率大幅下降。这对在这样的3D数据上操作的分割算法提出了若干挑战。稀疏的点云导致相邻点之间的欧氏距离增加,即使它们来自同一对象。因此,这些稀疏的3D点使其更难以推理分段。随着物体和传感器之间距离的增加,情况变得更加困难。

        本文的贡献是一种将地面与场景的其余部分分离的稳健方法,以及一种快速有效的3D距离数据分割方法,这些数据来自现代激光测距仪(如Velodyne扫描仪)。为了实现最终的分割,我们首先进行稳健的地面分离,可以快速可靠地检测地面。与其他几种方法不同的是,地面可以有轻微的曲率,不必完全平坦。我们也不使用任何类型的子采样,并为距离图像的每个像素确定它是否属于地面。图1中描述了一个去除地面的分割示例,其中使用来自Velodyne VLP-16扫描仪的数据正确地分割了人和车。

        我们的分割方法提供了有意义的分割,并且运行速度比扫描采集快数倍。即使在移动CPU上,我们也可以处理超过70赫兹(64线)或250赫兹(16线)的Velodyne扫描,因此比获取的扫描速度更快。我们通过在柱面距离图像上执行所有计算来实现这一点。这种方法是有利的,因为距离图像通常是小的、密集的,并且隐式地保持邻域信息。此外,我们的方法适用于提供相对稀疏的点云的扫描仪,因为这些云仍然可以表示为密集的距离图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值