◆◆◆ 文献解读 ◆◆◆
特别提示:今天这期内容对新手伙伴和不追求高分的老师们来说非常友好!!“思路简单 + 容易复现”,绝对是大家首选的性价比之王!主角是我们非常熟悉的“NHANES-临床数据分析”,纯生信斩获8分+,快来看看吧!
1. 文章介绍
标题: 不同胰岛素抵抗替代物与代谢功能障碍相关脂肪性肝病患者全因死亡率和心血管死亡率之间的关系
期刊: Cardiovascular Diabetology
影响因子: 8.5
研究思路: 临床数据获取 + 队列分析
优势: 纯生信无需实验
发表年份: 2025年5月
2. 研究背景
代谢功能障碍相关脂肪性肝病(MASLD,原称非酒精性脂肪性肝病,NAFLD)是全球最常见的慢性肝病,与胰岛素抵抗(IR)密切相关。IR不仅促进肝脏脂肪沉积,还与心血管疾病(CVD)和2型糖尿病风险增加相关,最终导致患者死亡率升高。目前,评估IR的替代指标(如HOMA-IR、TyG指数及其衍生指标)在不同人群中的预后价值尚不明确。
本研究旨在探讨不同IR替代指标对MASLD患者全因死亡率和心血管死亡率的预测能力。
3. 研究思路
1. 数据来源:
基于美国国家健康与营养调查(NHANES,2003-2018)的8753名MASLD患者数据,通过国家死亡指数(NDI)获取死亡率数据。
2. 研究设计:
-
纳入标准: 年龄≥20岁、超声脂肪肝指数(USFLI≥30)、符合MASLD诊断标准。
-
排除标准: 酒精性肝病、病毒性肝炎、药物性肝损伤等。
3. IR替代指标:
-
包括HOMA-IR、TyG指数、TyG-BMI指数、TyG-腰围指数(TyG-WC)、TyG-腰高比指数(TyG-WHtR)。
-
按四分位数分层(Q1-Q4),Q1为参考组。
4. 分析方法:
-
Cox比例风险模型、ROC曲线分析、限制性立方样条(RCS)模型、中介分析和亚组分析。
-
调整混杂因素:年龄、性别、种族、BMI、代谢疾病史等。
4. 研究结果
1. 基线特征
-
纳入8,753名MASLD患者,平均年龄53.4岁,女性占51.9%。
-
代谢特征: 高IR组(TyG-BMI Q4)患者更年轻、男性居多、肥胖比例高(BMI 35.34 vs. 28.30 kg/m²),且合并糖尿病、高血压、CVD比例显著升高(P<0.001)。
-
实验室指标: 高IR组甘油三酯(TG)、HbA1c、肝酶(ALT、GGT)升高,HDL-C降低(P<0.001)。
2. IR替代指标与死亡率的关联
-
TyG-BMI指数:
-
全因死亡率: Q4组风险为Q1组的2.84倍(HR=2.84, 95% CI 1.73–4.67, P<0.001)。
-
心血管死亡率: Q4组风险为Q1组的5.32倍(HR=5.32, 95% CI 2.26–12.49, P<0.001)。
-
非线性关系: 呈现“U型”曲线,阈值270.49(低于或高于阈值均增加死亡风险)。
-
-
其他指标:
-
TyG指数、TyG-WC、TyG-WHtR仅与全因死亡率显著相关(HR=1.36–1.83)。
-
HOMA-IR与死亡率无显著关联。
-
3. 预测效能分析(ROC曲线)
-
全因死亡率: 全调整模型(Model 3)的AUC为0.866(95% CI 0.844–0.875)。
-
心血管死亡率: 全调整模型AUC达0.902(95% CI 0.883–0.914),预测能力最优。
4. 亚组分析
- 年龄分层: TyG相关指标对≥60岁患者死亡风险预测更强(交互作用P<0.05)。
- 性别差异: 女性患者中TyG-BMI与死亡率关联更显著。
- 社会经济因素: 低收入(PIR<1.3)、低教育水平者死亡风险更高。
5. 中介分析
-
HbA1c和胰岛素介导了TyG指数与死亡率的关联(间接效应占比37.7–94.1%)。
-
HOMA-IR的间接效应存在抑制现象(胰岛素介导效应为-45.3%)。
5. 总结
本研究首次揭示TyG-BMI指数是预测MASLD患者全因死亡率和心血管死亡率的最佳指标,其“U型”关系提示极端肥胖或低体重均可能增加死亡风险。相较于传统HOMA-IR,TyG相关指标因整合代谢异常和肥胖因素,具有更高的临床实用价值。研究结果为MASLD患者的风险分层和个性化干预提供了重要依据。
6. 后话
这篇文章仅用“NHANES数据库 + 基线统计 + ROC曲线 + RCS曲线 + 亚组分析 + 中介效应”,纯生信斩获8分+!相较于目前很火的联合分析思路,实操更简单,性价比更高,感兴趣的小伙伴们可以自己上手复现。
对NHANES思路有想法的伙伴们随时可以滴滴我们,从思路设计到个性化分析,我们将为你提供专业辅助,让你的科研之路一路畅行。
关于我们: 我们的团队是领航生信,如果大家想要系统学习常规SCI生信套路和流程或者了解更多生信相关知识,可以在下方公众号链接找到我们~~~
祝大家能够开心学习,轻松学习,在学习的路上少一些坎坷~~~
- 目录部分跳转链接:零基础入门生信转录组数据分析——导读