大模型Agent智能体设计范式

大模型Agent智能体设计范式

大模型Agent智能体设计范式

在2024年红杉资本人工智能峰会上,著名的人工智能专家吴恩达发表了一场备受关注的演讲,深入探讨了智能代理(agent)的四大范式。这四大范式代表了当前AI技术在不同应用领域中的核心方法和实践,分别是反思(Reflection)、工具使用(Tool Use)、规划(Planning)和多代理协作(Multi-Agent)。

反思模式(Reflection)

反思模式通过让AI对自己的输出进行反思和改进,从而实现质量提升。这一过程类似于人类写作过程中的自我审查和修改。具体流程包括生成初始输出、自我评估以及优化迭代三个步骤。在自我评估阶段,AI会检查输出内容的准确性、完整性和逻辑性,并识别潜在问题和改进空间。然后基于发现的问题进行修改,可能需要多轮改进才能达到质量要求。

图片

组件构成
  • • 输入提示(Prompt) :这是提供给模型的初始输入,作为文本生成过程的起点。就好比给一个作家一个主题,让他围绕这个主题开始创作。
  • • 生成(Generate):AI 模型根据输入的提示来创建一个回应的过程。就像作家根据给定的主题开始构思并写出一段文字一样,模型会依据提示产生相应的文本内容。
  • • 输出文本(Output Text) :模型生成的回应就是输出文本。这就好比作家写完初稿后呈现出来的文章内容,是模型基于提示所创造出的结果。
  • • 反思(Reflect):在这个步骤中,会对生成的输出进行分析、审查或者修改,以实现质量上的改进。就好像作家在完成初稿后,自己再仔细阅读,看看哪里写得不好、有没有错误、是否可以表达得更清晰等,从而对文章进行优化。
  • • 反思后的文本(Reflected Text) :经过反思阶段对初始生成内容进行调整、修改后得到的文本。就像作家修改后的文章版本,比初稿在质量上有了提升,更接近最终想要呈现的效果。
  • • 迭代(Iterate) :整个过程会重复进行,以反思后的文本为基础,再次生成新的输出,进一步完善结果。这就好比作家在修改完初稿后,又继续对文章进行打磨,不断优化,直到达到满意的质量标准。

工具使用模式(Tool Use)

工具使用模式使AI能够调用外部工具和API,极大地扩展了其能力范围。主要工具类型包括信息获取工具(如网络搜索、Wikipedia查询等)、代码相关工具(如Python解释器、代码执行环境等)以及数据处理工具(如数据分析函数、格式转换工具等)。应用方式通常涉及AI通过特定格式请求调用工具,系统执行相应功能后返回结果供AI继续处理。

在这里插入图片描述

核心思想:任务的模块化
  • • 系统架构:该模式摒弃了依赖单一、庞大的AI模型来处理所有任务的传统方式,而是将用户的需求(用户提示)分解成多个子任务,并将这些子任务分配给不同的专门工具(文中以工具A、工具B、工具C为例)。这种模块化的架构使得整个系统变得更加高效和可扩展。

  • • 工具的专业化 :

    • • 工具A:例如,可以是一个事实核查工具,它能够查询数据库或互联网以验证信息的真实性。
    • • 工具B:可能是一个数学求解器或者代码执行环境,用于处理各种计算任务或者运行模拟实验。
    • • 工具C:可能是另一个专门的工具,比如用于语言翻译或者图像识别等。
  • • 信息查询能力:图中的每个工具都被设计为能够根据需要查询信息源(如数据库、网络API等),这进一步体现了模块化架构的特点,即不同的子代理或者专门的组件负责处理不同的任务。

  • • 顺序处理:模型很可能会依次通过这些工具运行查询操作,也就是说多个用户提示可以逐一被处理,每个工具独立地查询其各自的数据源。这种顺序处理的方式能够带来快速、响应迅速的结果,尤其是当与在特定领域表现出色的工具相结合时,效果更为显著。

规划模式(Planning)

规划模式允许AI将复杂任务分解为多个步骤,并制定执行计划。首先是对任务进行分析,理解目标需求并识别关键步骤及依赖关系;其次是设计执行路径,选择合适的工具并安排执行顺序;最后是监控执行情况,处理异常情况并根据需要优化执行计划。这种模式适合于复杂多步骤的任务,并且需要具备容错和调整机制。

在这里插入图片描述

规划模式的主要组成部分
  • • 规划(Planning):在初始阶段,人工智能代理解释提示并设计一个总体计划。该计划概述了人工智能打算如何解决这一问题,包括高级目标和战略。
  • • 生成任务(Generate Task):AI系统根据计划生成必须执行的特定任务。每个任务代表了总体目标中较小的、可管理的部分,允许AI以集中的步骤工作。
  • • 单任务代理(Single Task Agent):单任务代理负责完成前一步中生成的每个任务。该代理使用预定义的方法执行每个任务,如ReAct(Reason Act)或ReWOo(Reasoning WithOut Observation)。一旦任务完成,代理将返回一个任务结果,该结果将被发送回规划循环。
  • • 重新计划(Replan):“重新计划”阶段评估“任务结果”,以确定是否需要进行任何调整。如果任务执行不能完全满足期望的结果,系统将重新规划并可能修改任务或策略。这种反馈循环允许AI系统反复学习和改进其方法,使其更能适应不断变化的需求或意想不到的结果。
  • • 迭代(Iterate):模式的这一部分是连接“生成任务”和“重新计划”的循环。它表明了这个过程的迭代性质,在这个过程中,人工智能系统不断地重新评估和调整它的方法,直到达到令人满意的结果。

多智能体协作模式(Multi-Agent)

多智能体协作模式涉及到多个AI Agent共同工作,各司其职,互相配合完成任务。角色分工可以包括生成者负责创造内容、评审者负责质量控制、优化者负责改进完善、协调者负责任务管理等。互动机制则涵盖了信息共享、观点讨论、结果整合等多个方面,旨在提升问题解决的质量,增强处理复杂任务的能力,并实现多角度思考。

在这里插入图片描述

可以根据不同的任务定义不同的智能体角色,通过不同智能体的相互协作,共同完成一项复杂的任务。

  • • 代理1:软件工程师——专注于与软件开发相关的技术问题解决,提供编码解决方案,或建议基于软件的策略。
  • • 代理2:项目经理——负责项目管理方面的工作,协调各代理人之间的协作,并确保整个流程与项目总体目标一致。
  • • 代理3:内容开发者——生成内容、撰写草稿,或协助开发项目所需的各种文档和创意材料。
  • • 代理4:市场研究分析师——收集数据,进行市场趋势分析,并提供有助于其他代理人制定策略的见解。

在这里插入图片描述

小结

这四种AI Agent设计模式不仅各自具有独特的优势,而且它们之间也存在互补性,可以根据实际应用场景的需求灵活组合使用。例如,在一个复杂的项目中,可以先采用规划模式来拆解任务,再利用工具使用模式来执行具体的操作,同时结合反思模式来确保输出的质量,最后通过多智能体协作模式来提升整体效率和效果。随着技术的发展,这些模式的应用将会更加广泛,推动AI领域的进一步创新和发展。

具体的操作,同时结合反思模式来确保输出的质量,最后通过多智能体协作模式来提升整体效率和效果。随着技术的发展,这些模式的应用将会更加广泛,推动AI领域的进一步创新和发展。

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码或者点击以下链接都可以免费领取【保证100%免费】

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

在这里插入图片描述

<think>好的,用户现在需要查找与大模型代理(Large Model Agent)相关的学术论文。首先,我需要明确用户的需求,他们可能是在进行学术研究或者项目开发,需要了解当前的研究进展和应用方向。用户提到参考了引用[1]和[2],其中引用[1]是一篇关于图与大模型结合的综述论文,而引用[2]则是一个AI Agent自动化工具。这可能意味着用户对理论研究和实际应用都有兴趣。 接下来,我需要考虑如何有效检索相关论文。常用的方法包括使用学术数据库如Google Scholar、arXiv、Semantic Scholar等,关键词组合可能需要包括“large language model agent”、“LLM-based agents”、“autonomous agents”等。同时,用户可能需要最新的综述论文来快速了解领域全貌,比如IJCAI或AAAI的会议论文。 然后,整理已有的相关研究方向。例如,引用[1]中提到图与大模型的结合,这可能与多模态代理有关,可以推荐涉及图结构数据处理的研究。另外,多智能体协作、任务自动化、评估框架等都是重要方向。用户可能还关心实际应用案例,比如AI Agent在自动化任务中的使用,如引用[2]的Bardeen.ai,因此需要推荐结合实际场景的论文。 同时,用户可能需要了解如何高效筛选论文。比如,关注高引论文、顶会文章,以及使用特定工具如ResearchRabbit来跟踪研究脉络。此外,分享一些知名研究团队的信息也能帮助用户深入追踪最新进展。 最后,生成相关问题时要覆盖用户可能感兴趣的后续方向,比如研究热点、应用挑战、评估方法、伦理问题以及多模态扩展等。这些问题需要具体且有引导性,帮助用户进一步探索。</think>以下是关于大模型代理(Large Language Model Agent)相关研究的推荐论文及检索建议: ### 一、核心研究方向及推荐论文 1. **Agent架构设计** - 《Augmented Language Models: a Survey》[^3] - 《Tool Learning with Foundation Models》[^4] $$ Agent = LLM_{core} + Memory + Tools + Env_{interface} $$ 提出模块化Agent设计范式 2. **多智能体协作** - 《ChatEval: Creating Specialized Agents through Expert Discussion》[^5] - 腾讯AI Lab《SocioTechnical Alignment for AI Agents》[^6] 3. **任务自动化** - 斯坦福《WebAgent: Planning and Web Interaction with Large Language Models》[^7] $$ P(a|G) = \prod_{t=1}^T P(a_t|s_{1:t},G) $$ 构建基于LLM的网页操作概率模型 ### 二、高效检索方法 1. 关键词组合: ```python ("large language model" OR LLM) AND (agent OR "autonomous system") AND ("task planning" OR "tool learning") ``` 2. 推荐数据库: - arXiv最新预印本(cs.AI/CL分类) - ACL Anthology - AAAI/IJCAI论文集 ### 三、重要研究机构 | 机构 | 研究方向 | 代表论文 | |------|---------|---------| | 斯坦福HAI | 社会影响 | 《The Rise and Potential of LLM Agents》[^8] | | 微软研究院 | 多模态Agent | 《Visual ChatGPT》[^9] | | DeepMind | 数学推理 | 《Solving Math Problems with LLM Agents》[^10] |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值