- 博客(200)
- 资源 (4)
- 收藏
- 关注
原创 DataFrame的索引属性
摘要:DataFrame的索引属性loc[]和iloc[]分别用于显示索引(按标签)和隐式索引(按位置)。loc[]索引从1开始,iloc[]从0开始。示例中创建了一个DataFrame,使用loc[4]获取bob行信息,而iloc[3]实现相同效果,展示了两种索引方式的区别和用法。
2026-01-07 18:21:30
258
原创 DataFrame的属性
本文介绍了DataFrame的8个核心属性:index(行索引)、values(值)、dtypes(元素类型)、shape(形状)、ndim(维度)、size(元素个数)、columns(列标签)和T(转置)。通过示例代码演示了如何创建DataFrame并查看这些属性值,包括获取索引、列名、数据类型等基本信息,以及使用T属性实现行列转置。这些属性是DataFrame数据结构的基础操作,对数据处理和分析具有重要意义。
2026-01-07 18:10:32
145
原创 DataFrame的创建方式
本文介绍了三种创建Pandas DataFrame的方法:1)通过Series合并创建,将多个Series组合成字典形式;2)直接使用字典创建,键作为列名,值作为数据;3)通过columns参数指定列顺序,同时可用index参数自定义索引。每种方法都提供了示例代码和运行结果图示,展示了如何构建结构化数据表。这些方法灵活实用,可根据不同数据源和需求选择适合的创建方式。
2026-01-05 17:47:09
180
原创 Series的常用方法简介(二)
本文介绍了Pandas Series的8个常用方法:value_counts()统计值频次、count()计算非缺失值、nunique()获取唯一值数量、unique()返回去重数组、drop_duplicates()删除重复项、sample()随机抽样、sort_index()索引排序和sort_values()值排序。通过示例代码演示了这些方法的使用,包括创建Series、排序操作、去重处理及统计计算等。这些方法为数据分析提供了基础的数据处理和统计功能,适用于数据清洗、探索性分析等场景。
2026-01-05 17:39:33
346
原创 python for循环实现九九乘法表
本文介绍了如何使用Python的for循环实现九九乘法表。通过嵌套循环结构,外层循环控制行数,内层循环控制每行的乘法运算,并使用格式化字符串输出结果。代码简洁高效,运行后能正确打印出完整的九九乘法表。示例中还包含了代码运行结果的图片展示,直观呈现了程序输出效果。这种方法体现了Python处理循环结构的优势,适合初学者学习基础编程逻辑。
2026-01-02 18:10:48
168
原创 使用python for循环与ord() + chr()实现字符串加密
本文介绍了一种使用Python for循环实现简单字符串加密的方法。通过ord()和chr()函数,将输入字符串中的每个字符ASCII码值加1进行加密。代码示例展示了如何获取用户输入,遍历字符串进行加密处理,并输出加密结果。该方法实现了基础的字符位移加密,适用于初学者理解字符串处理和简单加密原理。运行结果展示了加密前后的字符串对比。
2026-01-02 18:05:55
221
原创 Series的常用方法简介(一)
摘要:本文介绍了Pandas Series的14种常用方法,包括数据查看(head/tail)、缺失值检测(isna)、统计计算(mean/sum等)和数据分析(describe/quantile)等功能。通过示例代码演示了如何创建Series对象并应用这些方法,如计算平均值、标准差、分位数等统计指标,以及判断元素是否存在(isin)和缺失值处理。文中包含对应的代码运行结果截图,直观展示了各方法的输出效果,为数据分析和处理提供了实用参考。
2025-12-15 14:56:13
265
原创 Series的属性简介
摘要: 本文介绍了Pandas Series的核心属性及索引方法。Series的主要属性包括index(索引)、values(值)、dtypes(数据类型)、shape(形状)、ndim(维度)、size(元素个数)和name(名称)。在索引访问方面,提供了loc[](标签索引)、iloc[](位置索引)、at[](标签访问单个元素)和iat[](位置访问单个元素)四种方式。通过示例代码演示了如何创建Series,并展示了不同索引方法的使用效果,包括显示索引、隐式索引以及单个元素的访问操作。
2025-12-15 14:36:50
373
原创 Series创建
Pandas中的Series是一种一维标记数组,可以存储各种数据类型。本文介绍五种创建Series的方法:1)基本列表创建;2)自定义索引创建;3)添加name属性;4)通过字典创建;5)引用其他Series创建。每种方法都提供了示例代码和运行结果,展示了如何生成带有默认索引、自定义索引或特定名称的Series对象,以及如何通过字典或其他Series来构建新的Series。这些方法为数据分析和处理提供了灵活的选择。
2025-12-01 15:51:15
225
原创 pandas简介
Pandas是一个基于NumPy的高性能Python数据分析库,提供Series和DataFrame两种核心数据结构。它具备高效处理大型数据集的能力,支持数据对齐、缺失值处理、时间序列操作等功能。DataFrame作为二维表格结构(行索引+列名)比一维的Series更常用,两者都构建在快速NumPy数组之上。Pandas广泛应用于金融、统计等领域,支持从多种文件格式加载数据,并提供类似SQL的数据操作功能,是Python数据分析的重要工具。
2025-12-01 15:33:32
261
原创 numpy -- argmax()、argmin()简介
NumPy的argmax()和argmin()函数用于返回数组中最大值和最小值的索引。argmax()返回最大值索引,argmin()返回最小值索引,可以沿指定轴(axis=0/1)操作。示例展示了在二维数组中查找全局极值索引,以及沿行(axis=1)和列(axis=0)方向查找极值索引的用法。这两个函数在处理多维数组时非常实用,能快速定位极值位置,是数据分析中的常用工具。
2025-10-28 18:03:30
194
原创 numpy -- max()、min()简介
NumPy的max()和min()函数用于计算数组元素的最大值和最小值。max()返回沿指定轴的最大值,min()返回最小值。示例展示了两种用法:1)对整个数组求极值;2)按行(axis=1)或列(axis=0)求极值。运行结果验证了函数能正确返回数组全局极值及各轴向极值。这两个函数是NumPy数值计算的基础工具,支持多维数组操作。
2025-10-28 17:57:48
283
原创 numpy排序函数argsort()介绍
摘要: argsort()函数对数组沿指定轴间接排序,返回排序后的索引数组,用于重构排序结果。示例展示了使用该函数对数组进行排序的应用场景及效果。
2025-10-14 18:02:21
128
原创 numpy排序函数sort()介绍
numpy的sort()函数用于对数组进行排序,返回排序后的副本。主要参数包括:a(待排序数组)、axis(排序轴,0按列/1按行)、kind(排序算法,默认快速排序)、order(按字段排序)。该函数支持多维数组排序,不改变原数组而是返回新数组。示例展示了如何使用sort()对数组进行行、列排序操作。
2025-10-14 17:57:31
264
原创 numpy -- average()函数简介
average()函数用于计算数组元素的加权平均值,通过将各元素与其对应权重相乘后求和,再除以权重总和得到结果。对于一维数组如[1,2,3,4]和权重[4,3,2,1],计算过程为(1*4+2*3+3*2+4*1)/(4+3+2+1)。该函数支持多维数组并可通过轴参数指定计算维度,未指定时数组将被展开处理。示例包含一维和多维数组的计算演示。
2025-10-10 18:45:28
415
原创 numpy -- 统计函数 mean() 函数简介
mean()函数用于计算数组元素的算术平均值。若指定轴参数,则沿该轴方向计算均值。图示展示了该函数的应用场景及效果。该功能适用于数据统计分析场景,能快速获取数据集的集中趋势特征。
2025-10-10 18:37:20
362
原创 numpy -- 统计函数 median() 求中值
median()函数用于计算数组元素的中位数(中间值)。对于奇数个元素,返回中间值;偶数个元素则返回中间两个数的平均值。示例展示该函数的具体应用场景和计算结果。
2025-10-09 18:44:38
153
原创 numpy -- 统计函数 amax()、amin() 和 ptp() 简要介绍
NumPy中的三个常用数组计算函数: amax() - 返回数组沿指定轴的最大值 amin() - 返回数组沿指定轴的最小值 ptp() - 返回数组最大值与最小值的差(峰-峰值) 这些函数支持沿指定轴计算,适用于多维数组处理。示例展示了它们在数组计算中的实际应用。
2025-10-09 18:41:15
366
原创 numpy -- 算术函数 mod()、remainder() 使用方法
mod()和remainder()函数用于计算数组中对应元素相除后的余数。这两个函数能够对数组中的每个元素进行逐个求余运算,返回余数值组成的新数组。示例展示了该函数的实际应用效果,通过可视化结果可以直观地看到元素间的求余运算结果。这类函数在数据处理和数值计算中非常实用,能方便地实现批量求余操作。
2025-10-08 21:44:57
233
原创 numpy -- 算术函数 reciprocal() 和 power() 简介
本文介绍了两个数学函数:reciprocal()返回分数的逐元素倒数,power()计算第一个数组中元素与第二个数组对应元素的幂次方。两个函数都支持数组操作,文中提供了示例图片说明其具体应用场景和使用方法。
2025-10-08 21:41:39
335
原创 numpy -- 算术函数 add(), subtract(), multiply(), divide() 简介
本文介绍了numpy的四个基础数学运算函数:add()(加法)、subtract()(减法)、multiply()(乘法)和divide()(除法)。通过示例图片展示了这些函数的实际应用场景,帮助读者直观理解其功能实现方式。这些函数可用于开发基础计算功能,是编程中常用的数学运算方法。
2025-10-05 16:49:27
172
原创 numpy -- 数学函数 floor() 和 ceil() 简介
本文介绍了numpy的两种数学取整函数:floor()和ceil()。floor()实现向下取整,返回不大于输入参数的最大整数(如3.7取整为3);ceil()实现向上取整,返回不小于输入参数的最小整数(如3.2取整为4)。文中指出Python的floor()总是向0方向取整,并附有示例图示说明两个函数的运算效果。这些函数在数值处理中非常实用,能帮助开发者快速实现精确的取整操作。
2025-10-05 16:45:48
335
原创 numpy -- 字符串函数 split()、splitlines() 和 strip() 简介
文章介绍了三种常用的Python字符串处理方法: split() - 按指定分隔符分割字符串并返回数组列表; splitlines() - 按换行符分割字符串返回行列表; strip() - 移除字符串首尾的特定字符。每种方法均配有示例图片说明其用法。这些方法在字符串处理中非常实用,可灵活实现字符串的分割和清理操作。
2025-10-03 09:53:23
600
原创 numpy -- 字符串函数 lower() 和 upper() 简介
NumPy提供专门的字符串处理函数(numpy.char),基于Python内置方法实现。主要包括:lower()将数组元素转为小写,upper()转为大写。这两个函数能对数组中的字符串元素进行批量大小写转换操作,示例展示了具体应用效果。这些函数扩展了NumPy在字符串处理方面的能力。
2025-10-03 09:46:33
237
原创 numpy -- 字符串函数 capitalize() 和 title() 简介
NumPy提供了专门的字符串处理函数(numpy.char),基于Python内置方法实现。其中capitalize()将字符串首字母大写,title()则将每个单词首字母大写。这些函数能够高效处理数组中的字符串元素,保持了NumPy的高性能特性。演示图示展示了函数的具体效果,便于理解和使用。这些方法为科学计算中的文本处理提供了便利工具。
2025-09-30 18:43:58
259
原创 numpy -- 字符串函数 add()与multiply()
NumPy提供了专门的字符串处理函数(numpy.char),基于Python内置字符串方法实现。主要包括add()函数用于数组元素间的字符串拼接,以及multiply()函数实现字符串的重复拼接操作。这些函数针对NumPy数组进行了优化,能够高效处理批量字符串操作,补充了Python原生字符串方法在数组处理上的不足。
2025-09-30 18:36:01
134
原创 numpy -- 数组操作 之 分割数组
本文介绍了NumPy中分割数组的三种方法:1) split()函数可沿指定轴将数组分割为子数组,参数包括被分割数组、切分位置/数量及轴向;2) hsplit()用于水平分割数组;3) vsplit()用于垂直分割数组。每种方法都配有示例展示具体用法,帮助理解如何按不同方式拆分数组。这些函数为数组操作提供了灵活的维度控制能力。
2025-09-26 17:35:09
324
原创 numpy -- 数组操作 之 连接数组
NumPy提供了多种数组连接方法: concatenate()沿指定轴连接同形状数组 stack()沿新轴连接数组序列 hstack()水平堆叠数组 vstack()垂直堆叠数组 各方法通过axis参数控制连接方向,适用于不同维度的数组操作,文中配图展示了具体使用示例。这些函数是NumPy处理多维数组数据的重要工具。
2025-09-26 17:25:38
156
原创 numpy -- 修改数组形式
Numpy提供了多种修改数组形状的方法:1) reshape()不改变数据只修改形状,支持按行/列等顺序;2) flatten()展平数组并创建副本,修改不影响原数组;3) ravel()展平数组返回视图,修改会影响原数组。三个函数都支持'C'(行)、'F'(列)等排序方式,主要区别在于是否创建副本或视图。示例展示了二维数组的展平操作,演示了不同方法对原数组的影响。
2025-09-25 19:45:05
223
原创 python魔法方法__call__()介绍
可调用对象:函数、内置函数和类都是可调用对象,凡是可以把一对()应用到某个对象上都可以称之为可调用对象。callable():判断对象是否是可调用对象,返回True或者False。():使一个实例对象成为一个可调用对象,就像函数那样可以调用。
2025-08-11 16:11:32
333
原创 python魔法方法__str__()介绍
如果类中定义了此方法,那么在打印对象时,默认输出该方法的返回值,也就是打印方法中return的数据。(): 对象的描述信息。()必须返回一个字符串。
2025-08-11 16:02:09
171
原创 python匿名函数lambda与if判断结合使用
格式:函数名 = lambda 形参:为真结果 if 条件 else 为假结果。lambda 结合if判断。
2025-08-02 23:15:55
286
原创 信息安全的定义
对信息系统的硬件、软件及其数据信息实施安全防护,保证在意外事故或恶意攻击情况下系统不会遭到破坏、敏感数据信息不会被篡改和泄露,保证信息的保密性、完整性、可用性以及可认证性、不可否认性、可追溯性、可控性等,并保证系统能够连续可靠地正常运行,信息服务功能不中断。
2025-07-09 11:17:52
422
python写入txt文件
2022-07-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅