【active contours without edges】level set水平集方法实现图像分割 论文详解+代码实现

本文深入探讨了无边框active contour算法,通过level set方法实现图像分割,避免依赖图像边界的梯度。介绍了传统方法的局限性和geometric active contour模型,提出了一种能量最小化方法,该方法不依赖初始曲线选择和边界梯度。通过广义函数和Euler-Lagrange方程求解,展示了不同的H函数近似对结果的影响,并讨论了代码实现中的关键调整,如内部项归一化和局部更新策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 传统依赖边界的active contour 算法

传统的levelset方法依赖于图像边界的梯度,需要引入一个单调递减函数edge-detector g(z)g(z)g(z)定义levelset方法的迭代速度。
st:lim⁡z→∞g(z)=0st: \lim\limits_{z\rarr \infty} g(z) = 0st:zlimg(z)=0

例如:g(∇u0(x,y))=11+∣∇Gσ∗u0(x,y)∣pg(\nabla u_0(x, y)) = \frac{1}{1 + |\nabla G_{\sigma}*u_0(x, y)|^p}g(u0(x,y))=1+Gσu0(x,y)p1
u0(x,y)=zu_0(x, y) = zu0(x,y)=z
原图像看作曲面Σ(x,y,u0(x,y))=0\Sigma(x, y, u_0(x, y)) = 0Σ(x,y,u0(x,y))=0

level set方法定义了一系列等高线
ϕ(x,y)=ci\phi(x, y) = c_iϕ(x,y)=ci
我们不妨用曲线CCC:ϕ(x,y)=0\phi(x, y) = 0ϕ(x,y)=0作为初始曲线,在根据需要对进行迭代
此时曲线CtiC_{t_{i}}Cti :ϕ(ti,x,y)=0\phi(t_i, x, y) = 0ϕ(ti,x,y)=0在迭代的过程中不断向图像的边界逼近,最后稳定下来即得到边界。

Remark: ϕ(t,x,y)\phi(t, x, y)ϕ(t,x,y)其中ϕ(0,x,y)=ϕ0(x,y)\phi(0, x, y) = \phi_0(x, y)ϕ(0,x,y)=ϕ0(x,y),根据定义的∂ϕ∂t=V∣∇ϕ∣\frac{\partial\phi}{\partial t} = V |\nabla\phi|tϕ=Vϕ利用迭代法求解PDE

level set方法有以下结论:
单位切向量TTT,n=−∇ϕ∣∇ϕ∣n = -\frac{\nabla\phi}{|\nabla\phi|}n=ϕϕ , ϕ(x,y)=c\phi(x, y) = cϕ(x,y)=c确定曲线C(x,y)C(x, y)C(x,y)

  1. n⊥Tn \perp TnT
    证明:由IFT(隐函数定理)
    ϕ(x,y)−c=0\phi(x, y) - c = 0ϕ(x,y)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值