YOLOv11的模型训练

1. 环境配置

1.1 安装cuda及cudnn

1.1.1 下载及安装cuda

在安装pytorch前需要安装cuda,下载cuda前需要先查看显卡支持的CUDA版本最高是多少,按下win+r键,输入cmd,在打开的页面输入:nvidia-smi ,即可查看。

cuda驱动下载

下载完之后运行安装,建议安装到默认路径,所以C盘需要留有20G以上的存储空间,一直点击下一步,直到出现这个界面点击自定义,然后全部勾选即可。 

将下图中选项全部勾选安装。

安装完成后可以再次在cmd里输入命令:nvcc -V 查看,如下显示即安装成功 

 1.1.2 cudnn安装

进入cudnn官网,选择合适版本的文件。

 cudnn驱动下载

进入后在文件列表中选择cudnn版本与上面cuda安装相匹配的版本。

下载Windows版本的压缩包文件。

将得到的压缩文件进行解压,解压后得到下图三个文件夹,全选复制进cuda的文件夹中进行覆盖替换,替换完成后即cudnn安装完成。按照本文教程安装的cuda的文件夹默认在 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8 目录下。

 1.2 创建虚拟环境

从 Python3.3 以后,标准库就内置了一个名为 venv 的模块,我们可以用它来创建虚拟环境,完全替换 virtualenv。

1.2.1 安装

不需要安装,Python3.3 及以上版本的内置标准模块.

1.2.2 用法

创建环境(bash)

python -m venv ENV_DIR

ENV_DIR 指定存放环境的目录,一般使用 venv,这是一个不成文的规定。

虚拟环境的目录树结构如下(Windows):

.venv
    ├─pyvenv.cfg
    ├─Include
    ├─Lib
    │  └─site-packages
    │      ├─pip
    │      ├─pip-20.2.3.dist-info
    │      ├─pkg_resources
    │      ├─setuptools-49.2.1.dist-info
    │      ├─easy_install.py
    │      └─__pycache__
    └─Scripts
    │  └─activate
    │  └─activate.bat
    │  └─Activate.ps1
    │  └─deactivate.bat
    │  └─easy_install-3.9.exe
    │  └─easy_install.exe
    │  └─pip.exe
    │  └─pip3.9.exe
    │  └─pip3.exe
    │  └─python.exe
    │  └─pythonw.exe

pyvenv.cfg 是一个配置文件,包含三个参数:

  • home:指向运行命令的 Python 安装目录;
  • include-system-site-packages:是否使用系统 Python 环境中安装的包。默认是 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值