1. 环境配置
1.1 安装cuda及cudnn
1.1.1 下载及安装cuda
在安装pytorch前需要安装cuda,下载cuda前需要先查看显卡支持的CUDA版本最高是多少,按下win+r键,输入cmd,在打开的页面输入:nvidia-smi ,即可查看。
下载完之后运行安装,建议安装到默认路径,所以C盘需要留有20G以上的存储空间,一直点击下一步,直到出现这个界面点击自定义,然后全部勾选即可。
将下图中选项全部勾选安装。
安装完成后可以再次在cmd里输入命令:nvcc -V 查看,如下显示即安装成功
1.1.2 cudnn安装
进入cudnn官网,选择合适版本的文件。
进入后在文件列表中选择cudnn版本与上面cuda安装相匹配的版本。
下载Windows版本的压缩包文件。
将得到的压缩文件进行解压,解压后得到下图三个文件夹,全选复制进cuda的文件夹中进行覆盖替换,替换完成后即cudnn安装完成。按照本文教程安装的cuda的文件夹默认在 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8 目录下。
1.2 创建虚拟环境
从 Python3.3 以后,标准库就内置了一个名为 venv 的模块,我们可以用它来创建虚拟环境,完全替换 virtualenv。
1.2.1 安装
不需要安装,Python3.3 及以上版本的内置标准模块.
1.2.2 用法
创建环境(bash)
python -m venv ENV_DIR
ENV_DIR
指定存放环境的目录,一般使用 venv
,这是一个不成文的规定。
虚拟环境的目录树结构如下(Windows):
.venv
├─pyvenv.cfg
├─Include
├─Lib
│ └─site-packages
│ ├─pip
│ ├─pip-20.2.3.dist-info
│ ├─pkg_resources
│ ├─setuptools-49.2.1.dist-info
│ ├─easy_install.py
│ └─__pycache__
└─Scripts
│ └─activate
│ └─activate.bat
│ └─Activate.ps1
│ └─deactivate.bat
│ └─easy_install-3.9.exe
│ └─easy_install.exe
│ └─pip.exe
│ └─pip3.9.exe
│ └─pip3.exe
│ └─python.exe
│ └─pythonw.exe
pyvenv.cfg
是一个配置文件,包含三个参数:
home
:指向运行命令的 Python 安装目录;include-system-site-packages
:是否使用系统 Python 环境中安装的包。默认是