多维dp详解

本文介绍了如何将四维动态规划(DP)问题通过优化转化为三维乃至二维DP,以降低时间和空间复杂度。以传纸条问题为例,通过状态压缩和滚动数组技巧,将原本的四维DP优化成二维DP,从而提高算法效率。文章最后提供了相应的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多维dp

一 定义

多维dp问题指的是一个问题具有多个维度,通常可类比于二维数组取数问题,进行直接暴力dp的话时间和空间的复杂度为 O ( n 4 ) O(n^4) O(n4)

下面以传纸条为例

二 暴力的四维dp

对于传纸条可以选择从上面和左边进行选择

f [ i ] [ j ] [ p ] [ q ] = m a x ( f [ i − 1 ] [ j ] [ p − 1 ] [ q ] , f [ i ] [ j − 1 ] [ p − 1 ] [ q ] , f [ i − 1 ] [ j ] [ p ] [ q − 1 ] , f [ i ] [ j − 1 ] [ p ] [ q − 1 ] ) f[i][j][p][q] = max(f[i-1][j][p-1][q],f[i][j-1][p-1][q],f[i-1][j][p][q-1],f[i][j-1][p][q-1]) f[i][j][p][q]=max(f[i1][j][p1][q],f[i][j1][p1][q],f[i1][j][p][q1],f[i][j1][p][q1])

三 四维dp优化为三维dp

我们可以使用k = i + j,使用k - i 代替j,k- p代替q,得到下面的状态转移方程

f [ k ] [ i ] [ p ] = m a x ( f [ k − 1 ] [ i − 1 ] [ p ] , f [ k − 1 ] [ i ] [ p ] , f [ k − 1 ] [ i ] [ p − 1 ] , f [ k − 1 ] [ i ] [ p ] ) f[k][i][p] = max(f[k-1][i-1][p],f[k-1][i][p],f[k-1][i][p-1],f[k-1][i][p]) f[k][i][p]=max(f[k1][i1][p],f[k1][i][p],f[k1][i][p1],f[k1][i][p])

四 三维dp优化为二维dp

通过观察上面的式子,我们可以发现前面的k其实并没有被用到,所以我们可以使用滚动数组进行优化,得到的结果就是

f [ i ] [ p ] = m a x ( f [ i − 1 ] [ p ] , f [ i ] [ p ] , f [ i ] [ p − 1 ] , f [ i − 1 ] [ p − 1 ] ) f[i][p] = max(f[i-1][p],f[i][p],f[i][p-1],f[i-1][p-1]) f[i][p]=max(f[i1][p],f[i][p],f[i][p1],f[i1][p1])

在此过程中我们只需要保证p > 1即可

五 code

#include<iostream>
#include<algorithm>
#define N 1010
using namespace std;
int f[N][N],v[N][N];
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= m;j++)
            scanf("%d",&v[i][j]);
    for(int k = 3;k <= n+m;k++)
        for(int i = n;i >= 1;i--)
            for(int j = n;j > i;j--)
            {
                f[i][j] = max(max(f[i-1][j],f[i-1][j-1]),max(f[i][j-1],f[i][j]));
                f[i][j] += v[i][k-i] + v[j][k-j];
            }
    printf("%d",f[n-1][n]);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值