【网络图】:附Origin详细画图教程

目录

No.1 理解网络图

No.2 画图流程

1 导入数据并绘图

2 设置绘图细节

3 效果图


No.1 理解网络图

  • 网络图,是一种由节点(或顶点)和连接这些节点的边(或链路)组成的图形结构。在网络图中,节点通常代表系统中的一个实体(如项目中的一项任务、通信网络中的一个设备、或运输网络中的一个站点),而边则代表这些实体之间的直接联系或流动(如任务的先后顺序、数据的传输路径、或乘客的旅行路线)。
  • 有向图:如果边具有方向性,即从一个节点指向另一个节点,则称为有向图。这种图常用于表示具有明确先后顺序或方向性的系统,如项目管理中的任务依赖关系。
  • 无向图:如果图中的边没有方向,则称为无向图。它适用于表示实体间相互关联但无明确方向性的系统。
  • 加权图:如果边具有权重,表示关系的强度或重要性。

No.2 画图流程

1 导入数据并绘图

  • 选中
### 使用Origin绘制深度学习图表的方法 对于深度学习模型训练过程中的性能指标可视化,可以利用Origin强大的绘图功能来展示损失函数变化、准确率提升等情况。由于深度学习产生的数据通常较为复杂且波动较大,在处理这类数据时,可借鉴Python中matplotlib配合高斯滤波的做法以平滑曲线[^1]。 #### 导入深度学习实验数据 为了在Origin里呈现深度学习的结果,第一步是要将保存下来的日志或者记录文件转换成适合软件读取的形式。按照指导说明,支持Excel表格形式的数据集输入方式;另外也接受纯文本格式(txt),只需简单地把目标文档拖拽至程序窗口内部完成加载操作即可[^2]。 #### 创建并优化图形表达 一旦成功载入所需资料之后,则可以根据具体需求挑选合适的图表样式来进行下一步编辑调整。针对神经网络迭代过程中所产生的大量数值型序列,折线图是一个不错的选择因为它能直观反映出随时间推移而发生的改变趋势。如果遇到原始数据显示杂乱无章的情形,不妨尝试应用内置的过滤器选项或是自定义脚本来实现类似于上述提到过的信号降噪效果。 ```python import numpy as np from scipy.ndimage import gaussian_filter1d # 假设这是从CSV文件读取出来的epoch和loss列表 epochs = list(range(0, 100)) raw_losses = np.random.rand(len(epochs)) * 2 + epochs[::-1] smoothed_losses = gaussian_filter1d(raw_losses, sigma=3) plt.plot(epochs, raw_losses, label='Raw Loss') plt.plot(epochs, smoothed_losses, color="red", linewidth=2, linestyle="-.", label='Smoothed Loss') plt.legend() plt.show() ``` 此段代码展示了如何通过Python先对外部获取来的未经加工的信息做初步整理再导出给Origin进一步美化的过程。值得注意的是这里仅作为演示用途,并非实际运行于Origin环境之内而是借助外部工具辅助准备更易解析的内容结构供后续调用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值