1、时间复杂度
一个算法的实现代码最基本的那个原操作执行的次数与问题规模n之间的函数关系。(渐进时间复杂度)
不能以循环嵌套的层次来评判算法的时间复杂度。
规则:
·省略常数项
·取最高的幂这一项
·去掉系数
//时间复杂度:O(n)
void fun(int n)
{
for(int i=0;i<n;i++)
{
printf("hello\n");
}
}
//时间复杂度:O(n^2)
void Fun(int n) {
for(int i = 0; i < n; i++) { // 循环次数为 n
for(int j = 0; j < n; j++) { // 循环次数为 n
printf("Hello, World!\n"); // 循环体时间复杂度为 O(1)
}
}
}
//时间复杂度:因为max(O(n^2),O(n)),所以时间复杂度为O(n^2)
void Fun(int n) {
// 第一部分时间复杂度为 O(n^2)
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
// 第二部分时间复杂度为 O(n)
for(int j = 0; j < n; j++) {
printf("Hello, World!\n");
}
}
//时间复杂度:O(m*n)
for(x=1; i<=m; x++)
{
for(i=1; i<=n; i++)
{
j = i;
j++;
}
}
//时间复杂度:O(logn)
int i = 1;
while(i<n)
{
i = i * 2;
}
//时间复杂度:O(logn)
//假设循环次数为t,2^t<n,执行次数t=log(2)(n),时间复杂度就为O(logn)
void Fun(int n) {
for (int i = 2; i < n; i++) {
i *= 2;
printf("%i\n", i);
}
}
//时间复杂度:O(nlogn)
for(m=1; m<n; m++)
{
i = 1;
while(i<n)
{
i = i * 2;
}
}
//时间复杂度:O(2^n)
//T(n)=T(n-1)+T(n-2)+1,加法算一次执行。简化后为:O(2^n)
long Fun(int n) {
if (n <= 1) {
return 1;
}
else {
return aFunc(n - 1) + aFunc(n - 2);
}
}
2、空间复杂度
算法执行期间所使用的额外空间与问题规模n之间的函数关系。
从两个方面去评判算法的空间复杂度:
(1)算法实现上有没有使用malloc或者new,并且申请空间与n相关。
(2)算法有没有递归实现,并且递归的次数与n有关。
//如果算法执行所需要的临时空间不随着某个变量n的大小而变化,即
//此算法空间复杂度为一个常量,可表示为 O(1)
int i = 1;
int j = 2;
++i;
j++;
int m = i + j;
//这段代码中,第一行new了一个数组出来,这个数据占用的大小为n,
//这段代码的2-6行,虽然有循环,但没有再分配新的空间,因此,这段
//代码的空间复杂度主要看第一行即可,即 S(n) = O(n)
int[] m = new int[n]
for(i=1; i<=n; ++i)
{
j = i;
j++;
}