人工智能 期末复习

这篇博客主要介绍了人工智能期末复习的重点,涵盖了基本概念如监督学习、无监督学习、回归、分类和聚类的定义与区别,以及遗传算法中的生物遗传概念对应的应用。此外,还讨论了谓词表示法、语义网络和框架表示在知识表示中的应用,并通过实例解析了产生式推理的过程。同时,涉及了向量的余弦相似度、欧几里得距离和曼哈顿距离的计算,以及深度优先搜索和宽度优先搜索方法。最后,通过八数码问题展示了启发式搜索算法的运用,并应用朴素贝叶斯分类方法预测数据集中的类别标签。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本概念

  • 1.人工智能研究的主要问题

      知识的获取,知识的表示,知识的运用
    
  • 2.请简述知识、数据、信息之间的联系和区别

    数据、信息和知识是知识工作者对客观事物感知和认识的3个连贯的阶段。
    数据即事实,信息是事实的载体,知识是人对信息的加工、吸收、提取、评价的结果
    
  • 3.盲目搜索启发式搜索的异同点

    描述
    盲目搜索 无需信息即可搜索 按预定的控制策略进行搜索,在搜索过程中获得的中间信息并不改变控制策略
    启发式搜索 信息搜索 在搜索中加入了与问题有关的启发性信息,用于指导搜索朝着最有希望的方向前进
  • 4.简要解释回归、分类和聚类概念

    首先,根据训练数据是否有标记信息,将学习任务分为“监督学习”和“无监督学习”。其中分类和回归是前者的代表,聚类是后者的代表。
    其次,三者都是针对预测问题。如果预测的值是离散的,称为“分类”,如果是连续的,称为“回归”,如果事先没有标记信息(或者说训练集没有标准答案),那么就称为“聚类”。

    回归方法是一种对数值型连续随机变量进行预测和建模的监督学习算法。使用案例一般包括房价预测、股票走势或测试成绩等连续变化的案例。回归任务的特点是标注的数据集具有数值型的目标变量。也就是说,每一个观察样本都有一个数值型的标注真值以监督算法。

    分类方法是一种对离散型随机变量建模或预测的监督学习算法。使用案例包括邮件过滤、金融欺诈和预测雇员异动等输出为类别的任务。许多回归算法都有与其相对应的分类算法,分类算法通常适用于预测一个类别(或类别的概率)而不是连续的数值。

    聚类是一种无监督学习任务,该算法基于数据的内部结构寻找观察样本的自然族群(即集群)。使用案例包括细分客户、新闻聚类、文章推荐等。因为聚类是一种无监督学习(即数据没有标注),并且通常使用数据可视化评价结果。如果存在「正确的回答」(即在训练集中存在预标注的集群),那么分类算法可能更加合适。

  • 5.简要回答个体、群体、染色体、基因、适应性这些生物遗传概念分别对应遗传算法中的哪些应用?

    生物遗传概念 遗传算法中的应用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值