题目描述
给定一个二叉树的根节点 root
,返回它的 中序 遍历 。
示例 1:
输入:root = [1,null,2,3]
输出:[1,3,2]
示例 2:
输入:root = []
输出:[]
示例 3:
输入:root = [1]
输出:[1]
提示:
- 树中节点数目在范围
[0, 100]
内 -100 <= Node.val <= 100
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
思路
方法一:递归法
- 确定递归函数的参数和返回值:与前序遍历相同,参数里需要传入vector来放节点的数值,递归函数返回类型也是void。
- 确定终止条件:在递归的过程中,如何算是递归结束了呢,当然是当前遍历的节点是空了,那么本层递归就要结束了,所以如果当前遍历的这个节点是空,就直接return。
- 确定单层递归的逻辑:前序遍历是中左右的顺序,单层递归的逻辑就是按照中左右的顺序来处理的。
方法二:迭代法
中序遍历的迭代法与前序、后序遍历的思路有所不同,因为中序遍历先访问的节点(中)与先处理的节点(左)不同,使得访问的顺序与处理的顺序不同。
在使用迭代法写中序遍历时,需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
代码
C++版:
方法一:递归法
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
// 中序遍历递归写法
// 1.确定递归函数的参数和返回值
void traversal(TreeNode* cur, vector<int>& vec){
// 2.确定终止条件
if(cur==NULL) return;
// 3.确定单层递归的逻辑
traversal(cur->left, vec); // 左
vec.push_back(cur->val); // 中
traversal(cur->right, vec); // 右
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
traversal(root,result);
return result;
}
};
方法二:迭代法
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> st; // 用栈来记录遍历过的元素
TreeNode* cur=root; // 遍历二叉树的指针
while(cur!=NULL || !st.empty()){
if(cur!=NULL){
st.push(cur);
// 当前节点不为空,要先遍历左孩子
cur=cur->left;
}else{
cur=st.top(); // 此时该节点的左孩子必为空
st.pop();
result.push_back(cur->val);
// 接下来要遍历当前节点的右孩子
cur=cur->right;
}
}
return result;
}
};
Python版:
方法一:递归法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
res=[]
def dfs(node):
if node is None:
return
dfs(node.left)
res.append(node.val)
dfs(node.right)
dfs(root)
return res
方法二:迭代法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
if not root:
return []
stack = [] # 不能提前将root结点加入stack中
result = []
cur = root
while cur or stack:
# 先迭代访问最底层的左子树结点
if cur:
stack.append(cur)
cur = cur.left
# 到达最左结点后处理栈顶结点
else:
cur = stack.pop()
result.append(cur.val)
# 取栈顶元素右结点
cur = cur.right
return result
需要注意的地方
1.在处理二叉树时,可以分为两步操作,第一步是访问节点(遍历节点),第二步是处理节点(将元素放进结果集)。
2.对于三种遍历操作,其实迭代法也能够写出统一风格的代码。不过仅使用栈的话无法同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况。因此我们要将访问的节点放入栈中,把要处理的节点也放入栈中,但是要做标记,在要处理的节点放入栈之后,紧接着放入一个空指针作为标记。 这种方法也可以叫做标记法。