LeetCode 77.组合

题目描述

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

示例 1:

输入:n = 4, k = 2
输出:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

示例 2:

输入:n = 1, k = 1
输出:[[1]]

提示:

  • 1 <= n <= 20
  • 1 <= k <= n

思路

回溯法三部曲:

  1. 确定递归函数的参数和返回值。定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数,然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
  2. 确定终止条件。path数组的大小如果达到k,说明已经找到了一个子集大小为k的组合。
  3. 确定单层递归的逻辑。for循环每次从startIndex开始遍历,然后用path保存取到的节点i,让递归函数通过不断调用自己一直往深处遍历,然后回溯,撤销本次处理的结果。

可以剪枝的地方就在递归中每一层的for循环所选择的起始位置,如果for循环选择的起始位置之后的元素个数已经不足需要的元素个数了,那么就没有必要搜索了。

优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 所需需要的元素个数为: k - path.size();

  3. 列表中剩余元素(n-i) >= 所需需要的元素个数(k - path.size())

  4. 在集合n中至多要从该起始位置 : i <= n - (k - path.size()) + 1,开始遍历

代码

C++版:

回溯法,未优化版

class Solution {
public:
    // 回溯法,未优化版 
    vector<vector<int> > result; // 存放符合条件结果的集合
    vector<int> path; // 存放符合条件的结果
    // startIndex是下一层递归的起始位置,防止出现重复的组合 
    void backtracking(int n,int k,int startIndex){
	// 终止条件
	if(path.size()==k){
		result.push_back(path);
		return ;
	}
	for(int i=startIndex;i <= n;i++){
		path.push_back(i); // 处理节点
		backtracking(n,k,i+1);
		path.pop_back(); // 回溯,撤销处理的节点
	}
}
    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }
};

回溯法,优化版

class Solution {
public:
    // 回溯法,优化版 
    vector<vector<int> > result; // 存放符合条件结果的集合
    vector<int> path; // 存放符合条件的结果
    // startIndex是下一层递归的起始位置,防止出现重复的组合 
    void backtracking(int n,int k,int startIndex){
	// 终止条件
	if(path.size()==k){
		result.push_back(path);
		return ;
	}
	for(int i=startIndex;i <= n - (k - path.size()) + 1;i++){ // 剪枝优化
		path.push_back(i); // 处理节点
		backtracking(n,k,i+1);
		path.pop_back(); // 回溯,撤销处理的节点
	}
}
    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }
};

Python版:

class Solution:
    # 回溯法,优化版
    def backtracking(self, n, k, startIndex, path, result):
        if len(path) == k:
            result.append(path[:])
            return
        for i in range(startIndex, n - (k - len(path)) + 2):  # 剪枝优化
            path.append(i)  # 处理节点
            self.backtracking(n, k, i + 1, path, result)
            path.pop()  # 回溯,撤销处理的节点
    def combine(self, n: int, k: int) -> List[List[int]]:
        result = []  # 存放结果集
        self.backtracking(n, k, 1, [], result)
        return result

需要注意的地方

1.回溯法的搜索过程可以抽象为树形结构,这样可以直观的看出搜索的过程。

2.回溯法中可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值