deepseek-r1本地部署和企业知识库搭建

目录

1.登录Ollama官网,点击下载安装包

2.接下来需要配置环境变量:

3.回到Ollama官网,点击Models,选择deepseek-r1模型

4.安装和搭建知识库软件

4.1安装Docker

4.2 下载ragflow 

4.3配置模型

4.4 搭建知识库

4.5测试

4.6 关闭服务器

4.7重启服务器


1.登录Ollama官网,点击下载安装包

亲测需要科学上网才能开始下载。

得到下面的安装包。

安装包下载完毕之后,点击,再点击install,会出现下面这样的安装进程,默认C盘且无法更改安装地址 。

安装之后,电脑右下角会出现图标,如果不放心可以在CMD窗口输入ollama查看是否安装成功。

此时键入ollama list还是没有出现任何东西的。

2.接下来需要配置环境变量:

3.回到Ollama官网,点击Models,选择deepseek-r1模型

复制下面的指令,并粘贴在CMD窗口 

此时黑窗口就会开始下载r1模型

显示success之后,再键入ollama list就会有如下显示: 

我这里更推荐下载下面带版本号的蒸馏模型,方便后续搭建知识库的时候引用。 

初体验:deepseek-r1给我的初感觉像是个刚学会说话的孩子,和chatgpt最大的使用区别就在于会把思考的过程也事无巨细呈现出来,两段式的回复使其更具拟人的色彩。

4.安装和搭建知识库软件

4.1安装Docker

在Docker官网下载安装包

记得添加国内镜像 

下载完成docker之后保持docker桌面软件的打开状态。

4.2 下载ragflow 

随便找到一个空文件,右键打开git Bash并使用下面的代码,进行git克隆(前提是已经下载好git)

git clone https://github.com/infiniflow/ragflow.git

注意:Git拉取代码前,一定注意先配置Git代理

git config --global http.proxy http://127.0.0.1:7890
git config --global https.proxy http://127.0.0.1:7890

此时会得到下面的项目文件 

进入 docker 文件夹,利用提前编译好的 Docker 镜像启动服务器:打开黑窗口

使用 docker-compose.yml 启动项目,并在后台运行

docker compose -f docker/docker-compose.yml up -d

服务器启动成功后再次确认服务器状态:这条代码的作用是查看 ragflow-server 容器的日志,并实时更新输出

docker logs -f ragflow-server

出现下面的图标,代表服务器启动成功 

打开浏览器,输入以下网址:

注册一个账号并登录。 

4.3配置模型

在rag界面点击右上角的头像,左侧找到模型提供商

在待添加中选择Ollama或者deepseek,我这里选择的是ollama,根据自己下载的模型名称,添加LLM

点击右上角系统模型设置完成模型设置。

4.4 搭建知识库

回到主界面,点击知识库并创建

这里的解析方法,需要根据自己的使用场景,自己选定,比如general方法支持的文件格式为DOCX、EXCEL、PPT、IMAGE、PDF、TXT、MD、JSON、EML、HTML。此方法将简单的方法应用于块文件:

  • 系统将使用视觉检测模型将连续文本分割成多个片段。
  • 接下来,这些连续的片段被合并成Token数不超过“Token数”的块。

搭建完知识库之后,再次点击进去,准备添加知识库文件,例如,我现在创建一个txt文本,自定义了一个概念,模拟企业级别的概念应用。

引入文件之后需要点击解析,显示如下的成功之后方可进行对话。 

4.5测试

点击:聊天->新建助理,设置自己的聊天机器人 

在最下面的知识库这里,选择刚刚自定义的知识库。

模型设置这里,选择已有的AI模型: 

有了聊天助理之后,点击新建聊天。 

如下,当我问及某概念的时候,它就会从数据库中提取相关信息,用deepseek-r1模型进行回答

4.6 关闭服务器

关闭ragflow服务器 

docker compose -f docker/docker-compose.yml down

 像下面这样,它会关闭 docker-compose.yml 里所有的容器,但不会删除数据卷和网络

4.7重启服务器

重复上面的3个步骤

记得退出docker

### DeepSeek-R1 本地部署知识库搭建指南 #### 环境准备 为了顺利进行 DeepSeek-R1本地部署,需遵循简易的三步流程来完成环境构建。此过程设计得非常直观,旨在让不同技术水平的人都能顺利完成设置工作[^1]。 #### 部署步骤详解 具体来说,在第一步中,用户需要准备好运行所需的硬件软件条件;第二步涉及安装必要的依赖项服务端口配置;最后一步则是启动服务并验证其正常运作状态。通过这三个阶段的操作,可以确保整个系统的稳定性功能性得到保障。 对于希望进一步优化性能或减少资源占用的情况,可以选择使用蒸馏版本的模型——即 **DeepSeek-R1-Distill-Qwen-7B** 。该版本不仅保持了原有功能特性,还实现了更高效的运算效率以及更低廉的成本投入[^2]。 #### 开启联网搜索及其他高级特性 一旦完成了基本的部署之后,还可以探索更多实用的功能选项。比如启用互联网搜索能力,这使得应用程序能够访问外部网络获取最新资讯支持材料。此外,还包括但不限于支持多种文件格式解析(PDF, CSV, TXT, MD, DOCX),允许用户上传文档并与之互动交流等功能[^3]。 ```bash # 示例命令:假设已按照官方指导完成前期准备工作后执行如下指令以激活特定模块 sudo systemctl start deepseek-r1.service curl http://localhost:8080/api/v1/search?q=example&source=internet ``` #### 构建个性化知识库 针对企业级应用场景下的需求定制化开发,则可以通过集成第三方API接口或者自定义插件的方式扩展平台的核心服务能力。例如创建专属的知识管理体系,利用自然语言处理技术自动分类整理海量数据源,并提供精准检索体验给最终使用者。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

剑客狼心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值