相关性分析
相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度
相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析,即两个变量之间是否有联系
相关性衡量指标
Pearson相关系数、Spearman相关系数、Kendall相关系数、偏相关系数,多分格(polychoric)相关系数和多系列(polyserial)相关系数
- cor()函数
cor(x, y = NULL, use = “everything”,method = c(“pearson”, “kendall”, “spearman”))
x:数字向量、矩阵或数据帧。
y:NULL(默认值)或向量、矩阵或与x兼容的数据帧。默认值相当于y = x(但更有效)。
use:一个可选字符串,提供在缺失值存在时计算协方差的方法。它必须是字符
method:指示要计算的相关系数(或协方差)的字符串。
> s <- state.x77
> cor(s)
Population Income Illiteracy Life Exp Murder HS Grad Frost Area
Population 1.00000000 0.2082276 0.10762237 -0.06805195 0.3436428 -0.09848975 -0.3321525 0.02254384
Income 0.20822756 1.0000000 -0.43707519 0.34025534 -0.2300776 0.61993232 0.2262822