R语言-相关性分析函数

这篇博客介绍了R语言中进行相关性分析的基本概念和常用函数。主要内容包括Pearson、Spearman和Kendall等多种相关系数,以及如何使用cor()函数进行计算。此外,还提到了ggm包中的pcor()函数用于计算偏相关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关性分析

相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度
相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析,即两个变量之间是否有联系

相关性衡量指标

Pearson相关系数、Spearman相关系数、Kendall相关系数、偏相关系数,多分格(polychoric)相关系数和多系列(polyserial)相关系数

  • cor()函数

cor(x, y = NULL, use = “everything”,method = c(“pearson”, “kendall”, “spearman”))
x:数字向量、矩阵或数据帧。
y:NULL(默认值)或向量、矩阵或与x兼容的数据帧。默认值相当于y = x(但更有效)。
use:一个可选字符串,提供在缺失值存在时计算协方差的方法。它必须是字符
method:指示要计算的相关系数(或协方差)的字符串。

> s <- state.x77
> cor(s)
            Population     Income  Illiteracy    Life Exp     Murder     HS Grad      Frost        Area
Population  1.00000000  0.2082276  0.10762237 -0.06805195  0.3436428 -0.09848975 -0.3321525  0.02254384
Income      0.20822756  1.0000000 -0.43707519  0.34025534 -0.2300776  0.61993232  0.2262822  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值