基于AI-有限元融合的复合材料多尺度建模与性能预测前沿技术

随着航空航天、新能源等领域对复合材料性能需求的升级,传统“试错法”研发模式面临瓶颈:微观结构设计依赖经验、多尺度耦合机理不透明、全参数空间探索计算成本高昂。与此同时,人工智能与高性能计算的融合为材料科学提供了新范式——通过构建“物理仿真+数据驱动”的混合模型,实现材料性能的精准预测与设计优化。

国际趋势方面,Nature等顶尖学术期刊持续聚焦“多尺度建模”、“AI+复合材料”等交叉研究前沿,ABAQUS 与 AI 技术融合驱动的复合材料建模与仿真创新研究正成为全球热点。由知名学者领衔的科研团队不断在多尺度机理剖析、智能化复合材料结构开发等方面取得突破性成果,推动着复合材料技术向更高比强度、更优耐久性、更强多功能性等目标加速迈进。

国家需求层面,我国《国家自然科学基金“十四五”发展规划》中优先发展领域明确提出“面向航空航天、先进制造、新能源等领域对优异力学性能、特殊功能的新材料和新结构的迫切需求,重点研究新材料的本构理论、破坏理论、多尺度力学行为、新实验与计算方法,新结构的力学设计与分析、安全寿命评估、多功能驱动的设计方法、智能技术相结合的分析方法等。”

学科发展维度,智能复合材料技术作为新兴交叉学科领域正蓬勃兴起,众多头部企业对既精通复合材料核心技术,又熟练掌握多尺度仿真技巧与 AI 应用开发的复合型人才求贤若渴,相关岗位招聘需求持续井喷。

7月5日-6日(周六周日)7月12日-13日(周六周日)腾讯会议

关键理论与软件二次开发使用方法

1.基础理论:

1.1.复合材料均质化理论(Eshelby方法、代表性体积单元RVE)论文详述

1.2.有限元在复合材料建模中的关键问题(网格划分、周期性边界条件)

1.3.神经网络基础与迁移学习原理(DNN、CNN、Domain Adaptation)

1.4.纤维复合材料的损伤理论(Tsai-Wu准则、Hashin准则)

实践1:软件环境配置与二次开发方法实践

ABAQUS/Python脚本交互(基于论文中RVE建模案例)

ABAQUS GUI操作与Python脚本自动化建模输出应力-应变场数据的文件格式标准化

ABAQUS二次开发框架搭建

基于ABAQUS二次开发程序的Hashin/Tsai-Wu失效分析有限元实践

TexGen软件安装及GUI界面操作介绍、Python脚本参数化方法

三维编织/机织纤维复合材料几何模型及网格划分方法

多尺度建模与数据生成方法

2.复合材料多尺度建模与仿真分析方法

2.1.多相复合材料界面(纤维/基质界面)理论机理(Cohesive模型)

2.2.连续纤维复合材料RVE建模(纤维分布算法、周期性边界条件实现)

2.3.参数化设计:纤维体积分数、纤维直径随机性等对性能的影响

2.4.双尺度有限元仿真方法原理及理论(FE2方法)

2.5.直接双尺度有限元仿真方法原理及理论方法(Direct FE2方法)

实践2:大批量仿真分析与数据处理方法

考虑界面结合(Cohesive模型)的复合材料分析模型建立

基于Python的ABAQUS批量仿真(PyCharm嵌入ABAQUS计算内核)

基于PowerShell调用Python FEA脚本解决动态内存爆炸问题

控制纤维体分比的纤维丝束生成算法(RSE)
编写脚本生成不同纤维排布的RVE模型

输出训练数据集(应变能密度、弹性等效属性等)

ABAQUS实现Direct FE2方法仿真分析(复合材料)

深度学习模型构建与训练 3.深度学习模型设计:

3.1.基于多层感知机(DNN)的训练预测网络

3.2.基于卷积神经网络(CNN)的跨尺度特征提取网络(ResNet/DenseNet)

3.3.复合材料的多模态深度学习方法(结构特征提取+材料属性)

3.4.三维结构(多相复合材料/单相多孔材料)的特征处理及预测方法

3.5.物理信息神经网络(PINN):将物理信息融合到深度学习中

3.6.迁移学习策略:预训练模型在新型复合材料中的参数微调

实践3:代码实现与训练

深度学习框架PyTorch/TensorFlow模型搭建

构建多层感知机(DNN)的训练预测网络

数据增强技巧:对有限元数据进行噪声注入与归一化

构建二维结构的特征处理及预测网络(CNN—ResNet/DenseNet)+多模态学习预测

构建三维结构的特征处理及预测网络(三维卷积神经网络)

建立物理信息神经网络(PINN)学习预测模型

迁移学习与跨领域应用 4.迁移学习理论深化

4.1.归纳迁移学习与迁移式学习理论深入详解与应用

4.2.归纳迁移学习在跨领域学习预测中的应用

4.3.领域自适应(Domain Adaptation)在材料跨尺度预测中的应用

4.4.案例:碳纤维→玻璃纤维、树脂基质→金属基质的性能预测迁移

实践4:基于预训练模型的迁移学习

迁移学习神经网络模型的搭建

归纳学习方法:加载预训练模型权重,针对新材料类型进行微调

领域自适应:使用领域自适应方法预测未知新材料相关属性

使用TensorBoard可视化训练过程与性能对比

实践5:端到端复合材料性能预测系统开发

参数化建模→有限元计算→神经网络预测→结果可视化全流程实现

讲师来自全国重点大学、国家“985工程”、“211工程”重点高校,计算力学博士,主要研究方向:深度学习加速的FEA、多尺度分析方法、结构逆向设计等;以第一作者于Composites Science and Technology、CMAME、CS等TOP期刊发表论文多篇,授权发明专利3项。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

复合材料多尺度建模是一个活跃的研究领域,近年来取得了一些重要的进展。以下是一些最新的研究方向和方法: 1. 基于机器学习人工智能建模方法:近年来,机器学习人工智能技术在材料科学领域得到广泛应用。这些方法可以通过学习大量的实验数据和模拟结果,自动发现材料的结构性能之间的关联,并预测复合材料性能。这种数据驱动的建模方法可以提高建模效率和准确性。 2. 基于多尺度计算的方法:随着计算机技术的发展,多尺度计算方法在复合材料建模中得到了广泛应用。这些方法将宏观尺度、中间尺度和微观尺度的模型进行耦合,通过信息传递和参数校准,实现不同尺度之间的相互关联。同时,也有一些基于物理原理的多尺度方法被提出,如量子力学/分子力学(MM/QM)方法和从头算方法等。 3. 非线性力学行为建模:传统的复合材料建模方法多是基于线性弹性理论,但在实际应用中,复合材料往往会表现出非线性力学行为,如屈曲、局部损伤和断裂等。因此,近年来出现了许多针对复合材料非线性行为的建模方法,包括微损伤力学、连续介质损伤力学和断裂力学等。 4. 多物理场耦合建模复合材料性能受到多个物理场的影响,如力学、热学、电磁学等。因此,最新的研究工作将不同物理场的模型进行耦合,以更准确地描述复合材料的多物理场行为。这些方法涉及到多场耦合方程的建立和求解,如热-力学耦合模型、电-力学耦合模型等。 需要指出的是,复合材料多尺度建模仍然是一个具有挑战性的领域,尚有许多问题需要解决。例如,如何考虑复合材料中的不确定性和变异性,以及如何将建模结果实验数据进行有效的验证和修正等。因此,未来的研究将继续推动多尺度建模方法的发展,并进一步提高其准确性和适用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值