本期主题:启动并运行TensorFlow
参考书籍:
【AO-AZ-90-蜥蜴书-中文版-Hands on Machine Learning with Scikit Learn and Tensorflow】
审核目标:成功跑通蜥蜴书中的前馈神经网络框架,并且成功带入给定的数据集进行分析——注意是实习公司的数据集,不再是原来购买的数据集
本小节整体框架——TensorFlow
Q1:为什么TensorFlow中有创建图谱这种操作?很本元的一个问题
Q3:batch和epoches的含义是什么
Q2:这里的手动渐变和梯度下降以及自动梯度下降到底是干什么的?用在常规的网络里面是干什么
明白这玩意啥意思了
批量梯度下降和随机梯度下降
大白话5分钟带你走进人工智能-第十一节梯度下降之手动实现梯度下降代码(6)
梯度下降之手动实现梯度下降和随机梯度下降的代码
000
#借助随机种子,创建模拟训练集
import numpy as np
np.random.seed(1) #随机种子np.random.seed(1)和直接的随机数np.random.randn(100,1)区别在哪里?
X=2*np.random.randn(10000,1)
Y=4+3*X+np.random.randn(10000,1)
X_b=np.c_[np.ones((10000,1)),X]
#print(X_b)
#学习率,迭代次数,样本数和初始化设定
learning_rate=0.1
n_iterations=500
m=10000
theta=np.random.randn(2,1)
count=0
#循环迭代,促成梯度下降--计算梯度的公式——迭代
for iterations in range(n_iterations):
count+=1
gradients=1/m*X_b.T.dot(X_b.dot(theta)-Y)
theta=theta-learning_rate*gradients
print(count)
print(theta)
Q1:固定随机种子np.random.seed(x)和正常的表达式中的随机数np.random,randn(x,x)的区别在哪里?np.random.randn(x,x)中括号的作用是干什么?