一、技术基础篇
Q1 AI产品核心三要素?
答案:
- 问题驱动:解抉真实用户痛点(如工业质检漏检率)
- 数据闭环:数据→模型→反馈的自优化飞轮
- 持续迭代:应对数据漂移和体验升级
Q2 什么是数据闭环(Data Flywheel)?
答案:
核心价值:
- 特斯拉影子模式收集10亿英里数据优化自动驾驶
- 抖音推荐系统通过观看时长数据实时更新模型
Q3 如何定义AI产品的MVP?
答案:三要素原则
要素 | AI-MVP要求 | 案例 |
---|---|---|
验证目标 | AI解决能力可行性 | 医疗AI仅识别肺结节 |
数据冷启动 | ≥100样本/类 + 合成数据 | GAN生成缺陷样本 |
成功标准 | 双重指标:模型准确率>85% + 用户任务完成率提升30% |
Q4 如何解决冷启动问题?
答案:四级应对策略
- 数据层:GAN生成合成数据 + 迁移学习
- 算法层:知识图谱推理(如牧国科技提升推荐准确率40%)
- 产品层:用户偏好标签选择(如B站新用户兴趣注册)
- 工程层:预载模型镜像(冷启动时间从65s→5s)
Q5 为什么需持续迭代模型?
答案:四大衰退因子
- 数据漂移:用户行为变化致月均精度降2-5%(如疫情后露营装备流量暴涨)
- 概念漂移:特征映射关系变化(如“点赞”从喜爱→礼节性)
- 对抗升级:黑产攻击模式进化(风控模型需周级更新)
- 体验阈值:用户半年后要求准确率从70%→90%
二、工程部署篇
Q19 模型部署(Model Serving)方式?
答案:
方式 | 适用场景 | 工具链 |
---|---|---|
云端API | 流量波动大的互联网产品 | AWS SageMaker |
私有化部署 | 高数据安全要求场景 | TensorFlow Serving |
边缘设备 | 实时响应需求(工业质检) | TensorFlow Lite |
Q20 什么是模型版本控制?
答案:三大核心能力
- 元数据管理:记录训练数据/超参数
- 分支机制:Dev(开发)→Staging(测试)→Prod(生产)
- 秒级回滚:Git+MLflow集成实现版本切换
Q21 如何优化推理速度?
答案:三重加速策略
graph TB
A[输入请求] --> B[计算优化:算子融合]
A --> C[内存优化:KV缓存压缩]
A --> D[硬件加速:FP8量化]
关键数据:vLLM框架提升吞吐量5倍
Q22 模型量化(Quantization)的影响?
答案:
量化类型 | 精度损失 | 加速比 | 适用场景 |
---|---|---|---|
FP32→FP16 | <1% | 1.5-2x | 通用GPU推理 |
FP16→INT8 | 2-5% | 3-4x | 边缘设备/手机 |
产品权衡:医疗影像慎用(漏诊风险 vs 工业检测适用) |
Q23 如何管理数据隐私合规?
答案:GDPR三大实施要件
- 匿名化:差分隐私添加噪声(如第四范式风控系统)
- 合法依据:用户明示同意 or 通过EDPB“三步测试”
- 数据本地化:欧盟数据禁止跨境传输
Q24 如何评估计算资源成本?
答案:公式拆解
总成本 = (显存占用(GB)×GPU时单价×加载时长) + (单次推理FLOPs/GPU算力)×调用量
优化案例:DeepSeek-R1通过KV缓存压缩降本62%
三、业务场景篇
Q13 智能客服核心模块?
答案:四模块闭环设计
关键创新:GPT-4生成问答对 + 声纹识别愤怒值
Q14 推荐系统体验优化?
答案:痛点撃破策略
用户痛点 | 解决方案 | 指标提升 |
---|---|---|
信息茧房 | 10%流量推差异内容 | 覆盖率↑20% |
冷启动差 | 注册标签+实时反馈 | 新用户留存↑35% |
Q15 高准确率低满意度分析?
答案:三维诊断法
- 指标错位:测试集偏离真实分布(如缺方言数据)
- 场景错配:医生拒用因缺乏决策依据
- 体验断点:多次转人工致效率下降
Q16 用户反馈机制设计?
答案:四阶体系
- 隐性反馈:埋点监测页面停留时长
- 轻量反馈:👍/👎按钮(成本<3秒)
- 结构化反馈:缺陷类型勾选
- 深度反馈:极端用户访谈
Q17 人机协同平衡策略?
答案:风险分级矩阵
风险等级 | 自动化比例 | 人工介入规则 |
---|---|---|
高风险 | <30% | 关键决策100%复核 |
中风险 | 60-80% | 低置信度时介入 |
Q18 向老板解释技术限制?
答案:话术三要素
技术限制 | 业务语言 | 类比 |
---|---|---|
数据依赖 | “AI像需培训的新员工” | 新人熟悉业务手册 |
响应延迟 | “大促时AI会堵车” | 双11快递延迟 |
四、商业伦理篇
Q25 AI产品商业模式?
答案:三大主流模式
模式 | 收费方式 | 案例 |
---|---|---|
API调用量 | $0.03/1k tokens | OpenAI GPT-4 |
价值分成 | 收益的10-20% | 量化投资信号 |
私有化授权 | $500k+年维护费 | 医疗影像系统 |
Q26 定价策略如何制定?
答案:双轨策略
- 渗透定价:新功能低价抢占市场(如ChatGPT免费版)
- 价值定价:按效果收费(广告点击率提升比例)
Q27 AI伦理对产品设计的影响?
答案:风险防控矩阵
伦理风险 | 设计应对 | 案例 |
---|---|---|
算法偏见 | 公平性测试(SHAP分析) | 贷款模型去种族特征 |
黑盒决策 | 可解释AI(LIME可视化) | 医疗诊断依据提示 |
Q28 如何避免算法偏见?
答案:三层过滤
- 数据层:过采样少数群体数据
- 模型层:Google MinDiff公平约束损失函数
- 评估层:监控群体平等性(SPD)指标
Q29 如何应对监管政策变化?
答案:动态合规引擎
跨辖区适配:
- 中国:数据本地化(网络安全法)
- 欧盟:默认隐私设计(GDPR)
Q30 如何衡量AI产品的ROI?
答案:量化公式
ROI = (成本节省 + 收入增长 - 研发投入) / 研发投入
核心指标:
- 人力替代率:(原工时-现工时)/原工时
- GMV贡献:AB测试组差值