在浏览本研究之前,十分建议您先阅读本专栏的上一篇文章,其详细介绍了本文工作的研究基础,链接如下:
该工作相较于前一篇文章,主要的贡献在于引入了反爬机制,突破了API爬取过程中被识别为机器爬取。
根据下图所示,我们获得了约18.1万条记录。本研究首先基于S13赛季为期两个月的热门微博进行了筛选,其次,对这些微博的评论进行了爬取。
可以看出,我们获得了微博文本的多项信息,包括用户昵称、正文内容、话题、转发量、评论数、点赞数、发布时间、发布工具以及发布IP地址。对于评论部分,我们获取了评论时间、评论文本、评论者昵称以及评论者IP地址等内容。
以上信息被用于数据分析领域的研究,目的是对用户画像进行描绘,以及研究热度传播地图等相关方面。
亲爱的开发者和数据分析者们,
您是否曾经为获取微博上的特定数据而苦苦挣扎?是否希望能够快速地收集用户行为、热门话题或关键词的信息?现在,您的等待终于有了答案!
我很荣幸向您推荐一份经过精心设计、高效实现的微博爬虫代码资源。这不仅仅是一份代码,更是对知识付费理念的坚定践行。并且提供代爬服务,但我们仍十分建议您获取代码。
在这份代码中,您将会发现:
- 强大而稳定的功能实现:经过精雕细琢的每一行代码,都旨在为您提供可靠的微博数据获取解决方案。
- 高效的性能优化:我投入大量时间对代码进行优化,以确保在不同场景下都能够实现最佳性能和稳定性。
- 清晰易懂的文档说明:除了详尽的代码注释外,我还提供了简洁明了的使用说明和技术文档,帮助您轻松上手。
如果您对这份工作的代码感兴趣,或者你无法运行代码,但需要相关数据展开研究,欢迎与我联系,我将竭诚为您提供更多详细信息。私信我,或者wx联系方式如下:(
Wx:OvernightPiggy
)