使用 PyCaret 进行时间序列预测:构建多步预测模型

熟悉时间预测

时间序列预测有助于利用过去的信息预测未来的数据,这在金融、天气和库存等领域非常有用。准确的时间相关预测有助于企业做出更好的选择。

单步预测是仅预测时间序列中下一个值的过程。此方法仅关注未来的一个时间点。多步预测意味着预测多个时间段(例如几周或几个月)的未来值。有两种方法可以做到这一点:

  • 直接预测:为每个未来时间步骤创建一个新模型
  • 递归预测:该模型使用过去的预测来预测下一个值

多步预测在金融、供应链和天气预报等领域很有用。

PyCaret 是什么?

**PyCaret**是一款简化预测的 Python 工具。它可以自动执行机器学习工作流程中的许多步骤,例如选择模型、设计特征以及找到性能最佳的模型。PyCaret 可以帮助完成以下工作:

  • 易于使用:PyCaret 凭借其简单的界面,可以轻松设置机器学习模型
  • 全面的模型选择:PyCaret 提供许多时间序列模型,例如 ARIMA、ETS 和 Prophet
  • 自动特征工程:PyCaret 创建有用的特征,例如过去的数据点和移动平均值,以改进预测
  • 模型调整和评估:PyCaret 通过调整设置和检查其性能来帮助改进模型

在本文中,我们将展示如何构建多步预测。多步意味着预测的不仅仅是下一个单个值。PyCaret 可以帮助您处理数据、模型和结果检查。我们将讲解如何构建和改进您的预测模型。

在继续阅读本文之前,您可能会发现本系列的前 3 篇文章很有帮助:

  1. [在 PyCaret 中构建自定义模型管道:从数据准备到生产]
  2. [PyCaret 中的自动特征工程]
  3. 使用 PyCaret 创建强大的集成模型

在开始之前,请确保已安装 PyCaret。您可以使用pip进行安装:

pip install pycaret

准备数据
我们将使用航空旅客数据集作为此示例。该数据集显示了每月的航空旅客数量。

import pandas as pd
from pycaret.time_series import *

# Load the dataset
url 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值