YOLO训练中断如何继续训练?

2024.10.26

1 前言

电脑不小心关机了、不小心关闭了pycharm、断电了…各中原因导致训练中断,如何恢复?

2 官方答案

官方文档
在这里插入图片描述
需要注意的是,训练一轮后才会恢复训练,具体看文档说明。

### YOLOv11 断点续训方法 对于YOLOv11模型,在遇到训练过程中断的情况时,可以采取特定措施实现断点续训。通常情况下,框架会提供保存检查点的功能,以便从中断处恢复训练。 #### 使用预定义的检查点功能 大多数现代深度学习库都支持自动保存中间状态作为检查点文件。这些文件包含了当前迭代次数、优化器的状态以及其他必要的参数,使得可以从最近一次保存的位置继续训练[^1]。 #### 修改配置文件设置 为了启用这一特性,需调整YOLOv11对应的配置文件(通常是`.yaml`格式),确保设置了合理的间隔来定期保存权重和其他必要信息到磁盘上。例如: ```yaml save_period: 10 # 每隔多少轮保存一次模型 resume: last_weights.pth # 如果存在此路径,则加载并从此位置开始 ``` #### 处理意外中断后的重启逻辑 当发生非预期性的程序崩溃或手动停止后,可以通过指定之前保存下来的最新检查点来进行恢复操作。这一般通过命令行选项完成,比如: ```bash python train.py --weights path/to/last_checkpoint --resume True ``` 上述做法适用于大部分版本的YOLO系列算法,包括但不限于YOLOv5, v8等,并且原理相同[^2]。然而针对具体版本如YOLOv11可能有所差异,建议查阅官方文档获取最准确指导[^3]。 #### 应对资源不足引发的问题 如果是因为硬件资源限制而导致中途退出,除了增加物理内存外还可以考虑减少批量大小(batch size),降低分辨率(imgsz), 或者关闭不必要的后台进程以释放更多RAM空间给训练任务使用[^4]。 ```python # 调整batch_size和imgsz参数示例 train_data_loader = DataLoader(dataset=train_dataset, batch_size=8, # 减少批次数量 shuffle=True) model.set_image_size(320) # 缩小输入图片尺寸 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值