线性代数的本质学习笔记chapter1

本文围绕线性代数与矩阵展开,介绍了线性代数围绕向量加法与数乘,阐述线性变换概念及与矩阵关系,说明矩阵乘法是线性变换复合,还涉及三维空间线性变换、行列式、逆矩阵、列空间、秩与零空间等知识,强调从向量几何角度学习更易理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下内容来源于B站1Blue1Brown视频合集“线性代数的本质"点击此处观看

线性代数的国内教材与该视频中对矩阵的介绍引入方式是完全不同的,初学者(比如本菜鸡)看了线性代数的一本教材(这里就不实名dis了)真的觉得很抽象,果然还是要站在向量几何这个角度来学习会更加便于理解。

“线性代数仅仅围绕着向量加法与数乘”

  • 两个向量全部线性组合构成的向量集合称为“张成的空间”(这两个向量有可能不共线、共线或者都是零向量)
  • 当只考虑一个向量时,将它看作箭头,当考虑多个向量时,将它们都看作是点
  • 三个三维向量( 第三个不在前两个决定的平面上)能表示出一个三维空间,可以看作是第三个向量使前两个向量所形成的平面来回移动
  • 线性相关:当有多个向量,并且移除其中一个之后不会减少长成的空间时,那么就说明他们是“线性相关的”。或者说,一个向量可以表示成另外两个向量的线性组合,因为这个向量已经落在他们所长成的空间中
  • 与此相对的是线性无关:由此可以引出一组基的严格定义:张成该空间的一个线性无关向量的集合

线性变换的概念以及它和矩阵的关系

“Unfortunately,no one can be told what the Matrix is.You have to see it for yourself.”
“很遗憾,矩阵是什么是说不清的,你必须得自己亲眼看看”

  • 变换这个词在提示我们用“运动”去思考
  • 线性变换可以看作是点的运动
  • 线性变换"线性"的条件:直线依旧是直线(注意,这里的直线还包括对角线等等),原点保持固定;总的来说,就是保持网络线平行并且等距分布的变换(线性变换其实是一种操纵空间的手段)
  • 矩阵起到了使坐标发生变换的作用 可以想象一下矩阵向量乘法的本质含义(将线性变换作用于某个向量),矩阵其实就是变换之后的基向量坐标,有人说过"数学不需要天赋,只是需要一些自由的想象"在这里插入图片描述
  • 练习用矩阵描述一些线性变换
  • 如果列是线性相关的(两个基向量共线,会使二维平面挤压成一条线)
  • 总结:矩阵是为我们提供了一种描述线性变换的语言,而矩阵向量乘法就是计算线性变换作用域给定向量的一种途径;线性变换是将向量作为输入和输出的一类函数,也可以看作是对空间的挤压拓展

矩阵乘法与线性变换复合

“It my experience that proofs involving matrices can be shortened by 50% if one throws the matrices out.”
“据我的经验,如果丢掉矩阵的话,那些涉及矩阵的证明可以缩短一半”

  • 复合变换:两个独立线性变换先后变换得到
  • 矩阵的乘法:看作先进行右边的变换,再进行左边的变换在这里插入图片描述
  • 学习时要注意思考矩阵乘法的意义,我们应该试着找到两次线性变换之后基向量的位置,而不是单纯背公式,如下图所示在这里插入图片描述
  • 请用变换相继的思想去思考矩阵乘积,如下图所示,只是以同样的顺序做三个相同的变换而已。
    在这里插入图片描述

三维空间中的线性变换

“stumbled into the third dimension"
“对于能拿到双曲拓扑学高等学位的傻瓜来说,这一点也足够明显——Hpmer Simpson误入了三维空间!”

与二维类似,可尝试自己推导下面的复合变换,想象三个基向量的不断变换
在这里插入图片描述

行列式

“The purpose of computation is insight,not numbers.”
“计算的目的不在于数字本身,而在于洞察其背后的意义”

  • 线性变换的行列式:基本意义是变换前后面积改变的倍数在这里插入图片描述

  • 下面这个特例将平面压缩到一条线上(甚至是一个点),因此它导致面积都变成0在这里插入图片描述
    在这里插入图片描述

  • 如何理解负数值?
    答:空间上可以理解成平面的翻转(比如你将一张纸翻过来);或者是基向量的相对位置发生改变

  • 三维空间中的行列式理解成体积的缩放(终于明白高中学立体几何的时候老师为什么教我们用行列式算体积了,数学真的是一种很奇妙的东西)在这里插入图片描述

  • 三维中的行列式为负值则可以用右手定则到左手定则的变化来解释

  • 如何计算?在这里插入图片描述
    在这里插入图片描述
    关于行列式的计算方法这里插个知乎链接(但请记住不要把计算放在学习的核心地位,即便这对考试来说也许很重要,但是我们已经有计算机可以帮助我们实现这些繁琐的工作,而如何让操控计算机,才是我们需要去思考的。可以自己去掌握一下“高斯消元法”和“行阶梯型”。)

逆矩阵、列空间、秩与零空间

“To ask the right question is harder than to anwser it.”
“提出正确的问题比回答它更困难”

  • 线性方程组的计算:可以看作是一个线性变换将一个向量变化为另一个向量的过程,我们需要求出的,就是变换前的向量。在这里插入图片描述
    注意,如果要使用逆变换的概念的话,A不能为0,只要满足A不等于0,那么就存在逆变换,因为没有任何一个变换可以实现“解压缩”,因为如果要解压缩,那么就要求一个变换将一条线变成一个面,然而变换只能有一个输入和一个输出,因此,这显然是不可能的
    A为0也是有解的,那就是两个向量共线
    在这里插入图片描述

  • 逆变换:如果经历两次线性变换后,空间变为初始状态,那么就可以说,后一个变换是前一个变换的逆变换。这种变换相继作用实则是矩阵乘法的体现。
    在这里插入图片描述
    这种“什么都不做的变换”也就是“恒等变换”
    先使用A变换,再使用A逆变换的结果就是——什么都没有发生。
    经过逆变换的学习,我们可以知道,想要求解,只需要将A的逆变换与已知的变换之后的向量相乘。

  • 关于秩:如果变换之后是一维的,我们可以说秩为1;变换之后是二维的(一个平面),我们可以说秩为2;因此,秩可以表示变换之后空间的维数;更精确的定义是秩表示列空间的维数。满秩:秩与列数相等,达到可达到的最大值

  • 列空间:在这里插入图片描述
    对于二维来说:
    在这里插入图片描述
    注意:零向量一定被包含在列空间中,因为线性变换必须保证原点不变。

  • 零空间:变换后落在原点的向量的集合,也可称作"核",对线性方程组来说,当结果为[0 0]时,零空间就是这个向量方程所有可能的解。在这里插入图片描述
    最后想说的是,数学不是考试的工具,它是一种思维,一种实践的方法,好好学习数学对我们以后的实际工作也是很有用的(这个是大一上学期的一点点感悟吧)
    小风现在要去吃饭啦
    see you this afternoon!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小风啊吼吼吼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值