前言
深度学习的进展在很大程度上得益于神经元模型的发展。这些模型,受到人脑神经元启发,形成了深度神经网络的基础。本文将对深度学习中的神经元模型进行探索,从其基本概念入手,逐步深入到如何组合这些基本构建块来构建复杂的深度学习模型。同时,我们将通过简单的代码示例来展示神经元模型的工作原理。
神经元模型的基本概念
在深度学习中,一个基本的神经元(也称为感知器)模型接收多个输入,产生一个输出。这一过程可以用以下数学表达式来描述:
[output = f(\sum_{i=1}^{n} weights_i \cdot inputs_i + bias)]
其中,(inputs_i)表示输入值,(weights_i)表示权重,(bias)是偏置项,(f)是激活函数,用于引入非线性。
简单代码示例:实现一个基本神经元
下面是一个简单的Python代码示例,展示了如何实现一个基本的神经元模型:
import numpy as np
def sigmoid(x):
"""Sigmoid激活函数"""
return