自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 【异常检测阅读笔记】SeaS

因此,研究如何高效生成逼真的异常图像、外观一致的正常产品图像以及精确的缺陷掩码,对于提升下游检测与分割模型的性能至关重要。通过实验观察,我们发现典型的文本提示,如有缺陷的瓶子的照片[ 18 ],或损坏的瓶子[ 46 ],对于工业异常的产生是次优的。2.·新设计的分离和共享的微调模型不同的正常产品和异常的变化,能够精确控制它们的生成,并获得用于掩膜预测的判别特征;我们引入了SeaS,一个统一的工业生成模型,用于自动创建多样化的异常、真实的正常产品和精确的异常掩码。

2025-09-18 14:05:12 396

原创 【异常检测阅读笔记】SUperSimpleNet

然后将该图与特征图F (或者在训练过程中加入噪声增强的特征图PF)进行级联,并作为分类头的卷积块的输入。设计的简单性对于在无监督和有监督的环境中实现良好的性能非常重要,在提供足够的判别力的同时最小化过拟合的风险。它不是在原始图像上进行简单的“剪切-粘贴”,而是在深度特征空间中,通过添加由柏林噪声(Perlin Noise)引导的高斯噪声来模拟各种形态各异的异常。现有的方法往往局限于特定的监督场景,难以适应现实世界制造过程中遇到的多样化数据标注,如无监督、弱监督、混合监督和全监督设置。

2025-09-17 11:34:01 464

原创 【异常检测阅读笔记】RealNet

尽管如此,这些方法在合成真实和多样化的异常样本,以及解决预训练特征的特征冗余和预训练偏差方面仍然面临挑战。由于缺乏可用的异常图像和关于异常类别的先验知识,现有方法依赖于精心设计的数据增强策略或外部数据进行异常合成,导致合成异常与真实异常之间存在显著的分布差异,从而限制了异常检测模型在真实应用中的泛化能力。1.提出了强度可控的扩散异常合成( SDAS ),一种基于扩散过程的合成策略,能够生成具有不同异常强度的样本,以模拟真实异常样本的分布。计算特征差异:计算异常图像和正常图像之间的特征差异。

2025-09-17 09:22:34 303

原创 【异常检测阅读笔记】Dinomaly

Dcos表示余弦距离,F ( · )表示平坦化操作,fD( h , w)表示( h , w)处的特征点,sg ( · ) 0.1表示将梯度缩小为原来的2的十分之一。先前多类无监督异常检测的检测性能低是由于神经网络的泛化能力太强,由于多类UAD设置,图像及其模式的多样性,解码器可以将其重建能力推广到看不见的异常样本,导致使用重建误差进行异常检测失败。问题,传统方法将重建改为恢复,即通过在输入图片或编码器特征上添加扰动作为伪异常,在解码器上把带有伪异常的输入恢复成无异常的正常结果(类似于去噪框架)

2025-09-17 09:20:56 747

原创 【异常检测阅读笔记】MuSc

通过聚合1x1 、3x3 和 5x5 三种不同大小的邻域特征,以获得对不同大小异常区域的表达,具体而言,小邻域聚合适合分割较小的异常区域(如上图(a)),大邻域聚合适合完整分割较大的异常区域(如上图(c)),多种大小邻域聚合特征的组合能够适应不同大小的异常区域。互打分模块基于“不同图像的正常区域较为相似,异常区域不相似”的事实,其他图像将为当前图像的每个区域分别进行打分,然后使用分数最低的30%进行区间平均得到每个区域的异常分数。,使用特征提取器(ViT)提取图像 的patch tokens为。

2025-09-17 09:19:37 361

原创 【异常检测阅读笔记】SoftPatch

工业视觉检测领域,传统算法在学术数据集上表现优异,但在实际应用中,由于训练集往往有噪声,性能大打折扣。我们提出了一种基于 patch 层面的去噪框架(SoftPatch/SoftPatch+),该框架在特征空间中更好地判断噪声 patch。提出了一种补丁级别选择策略来去除噪声样本的噪声图像块。与传统的图像级去噪相比,异常块被丢弃,噪声样本的正常块仍被用于构造核集。基于补丁级别的无监督异常检测方法主要分为三部分:特征提取、构建记忆库选择核心集、异常检测。完全无监督,解决异常检测中图像的噪声问题。

2025-09-15 17:49:37 161

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除