树结构的基础部分
为什么需要数这种结构
- 数组存储方式的分析
- 优点:通过下标访问元素,速度快.对于有序数组,还可以使用二分查找提高检索的速度.
- 缺点:如果要检索具体摸个值,或者插入值(按一定顺序)会整体移动,效率低
- 数组扩容每次底层都需要先穿件新的数组,然后将原来的数组拷贝到数组,并插入新的数据.数组存储方式示意图如下:
- 链式存储方式的分析
- 优点:在一定程度上对数组存储方式是有一定优化的,(比如,插入一个数值节点,只需要将插入节点,连接到链表中即可,删除效率也很好).
- 缺点:在进行检索时,效率仍然很低,比如(检索某个值,需要从头节点开始遍历)
- 示意图如下
- 树存储方式的分析
- 能提高数据存储,读取的效率,比如利用二叉排序树(Binary Sort Tree)),既可以包中数据的检索速度,同时包中数据的插入,删除,修改的速度
- 示意图如下
分析如果以二叉排序树来存储数据,那么数据的增删改查效率都可以提高[7,3,10,1,5,9,12]
分析一把以二叉排序来存储数据的效率
- 查找12 ,先跟7比较,12比7大,我们就去右边查找,12又和10比较,我们有往右边查找,经过两次查找我们就找到了
- 添加13,也很快
- 删除1这个节点,我们找到就直接删除,所有也很快
树的常用术语
- 节点(节点对象)
- 根节点(A 就是我们的根节点,没有父节点)
- 父节点(就是它上面有其他父节点,下面还有子节点)
- 子节点(有父节点,且它自己有子节点的节点加子节点)
- 叶子节点(没有子节点的节点)
- 节店的权(节点值)
- 路劲(从root节点找到该节点的路线)
- 层
- 子树
- 树的高度(最大层数)
- 森林:多颗子数构成森林
二叉树
二叉树的概念
-
树有很多种,每个节点最多只能有两个子节点的一种形式成为二叉树
-
二叉树的子节点分为左节点和有节点
-
如果该二叉树的**所有叶子节点都在最后一层,**并且节点总数2n-1,n 为层数,则我们称为满二叉树
-
如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树.连续(这里我们删除值这个节点,我们右边就不连续了,就不能称为满二叉树了.
二叉树的遍历说明
使用前序遍历 先输出父节点,在遍历左子树和右子树
中序遍历先遍历左子树,在输出父节点,再遍历右子树
后续遍历 先遍历左子树,在遍历右子树,最后输出父节点
小结 看输出父节点的顺序,来确定是前序,中序还是后序
分析二叉树的前序,中序,后序的一个遍历的步骤
- 先创建一颗二叉树
- 前序遍历
- 先输出当前节点(初始的时候是根节点,即root节点)
- 如果它的左子节点不为空,则递归继续前序遍历,
- 如果它的右子节点不为空,则递归继续前序遍历
- 中序遍历
- 如果当前节点的左子节点不为空,则递归进行中序遍历
- 输出当前节点
- 如果当前节点的右子节点不为空,则递归进行中序遍历
- 后序遍历
- 如果当前节点的左子节点不为空,则递归进行后续遍历
- 如果当前节点的右子节点不畏空,则递归进行后续遍历
- 输出当前节点
注意 :我们不管是前序,中序,还是后序,我们都是从根节点开始走的.
遍历的代码
package com.atguigu.tree;
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree=new BinaryTree();
//创建需要的节点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "无用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
// 说明
/**
* 我们先手动创建该二叉树,后面我们学习以递归的方式创建二叉树
*
*/
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
binaryTree.setRoot(root);
//测试,前序遍历
System.out.println("前序遍历================");
binaryTree.preOrder();
System.out.println("中序遍历=============");
binaryTree.infixOrder();
System.out.println("后序遍历============");
binaryTree.postOrder();
}
}
//定义一个BinaryTree 二叉树
class BinaryTree{
private HeroNode root;//根节点
public void setRoot(HeroNode root){
this.root=root;
}
//前序遍历
public void preOrder(){
if(this.root!=null){
this.root.preOrder();
}else {
System.out.println("当前二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder(){
if(this.root!=null){
this.root.infixOrder();
}else {
System.out.println("当前二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder(){
if(this.root!=null){
this.root.postOrder();
}else {
System.out.println("当前二叉树为空,无法遍历");
}
}
}
//先创建HeroNode节点
class HeroNode{
private int no;
private String name;
private HeroNode left;//默认null
private HeroNode right;//默认null
public HeroNode(int no, String name) {
this.no=no;
this.name=name;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
//编写 前序遍历的方法
public void preOrder(){
System.out.println(this);//先输出当前节点(父节点)
//判断递归向左子树前序遍历
if(this.left!=null){
this.left.preOrder();
}
//递归向右子树前序遍历
if(this.right!=null){
this.right.preOrder();
}
}
//中序遍历
public void infixOrder(){
//递归向左子树中序遍历
if(this.left !=null){
this.left.infixOrder();
}
//输出父节点
System.out.println(this);
//如果右子树不为空,我们递归中序遍历
if(this.right!=null){
this.right.infixOrder();
}
}
//后续遍历
public void postOrder(){
if(this.left!=null){
this.left.postOrder();
}
if (this.right!=null){
this.right.postOrder();
}
System.out.println(this);
}
}
对上面这个进行遍历,我们的前序遍历为:1,2,3,5,4
中序遍历:2,1,5,3,4
后序遍历:2,5,4,3,1
我们可以在上面的代码加一个关胜
代码如下:
package com.atguigu.tree;
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree=new BinaryTree();
//创建需要的节点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "无用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜");
// 说明
/**
* 我们先手动创建该二叉树,后面我们学习以递归的方式创建二叉树
*
*/
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
//测试,前序遍历
System.out.println("前序遍历================");
binaryTree.preOrder();
System.out.println("中序遍历=============");
binaryTree.infixOrder();
System.out.println("后序遍历============");
binaryTree.postOrder();
}
}
//后面的代码一样
二叉树-查找指定的节点
要求:
- 请编写前序查找,中序查找和后序查找的方法
- 并分别使用三种查找方式,查找heroNO=5的节点
- 并分析各种查找的方式,分别比较了多少次
思路分析
前序查找的思路:
- 先判断当前节点的no是否等于要查找的
- 如果是相等,则返回当前节点,
- 如果不等则判断当前节点的左子节点是否为空你,如果不为空你,则递归前序查找,
- 如果左递归前序查找找到了节点,则放回,否则继续判断,判断当前节点的右子节点是否为空,如果不为空,则继续向右递归前序查找.
中序查找的思路 - 判断当前节点的左子节点是否为空,如果不为空,则递归中序查找
- 如果找到,则返回,如果没有找到,就和当前节点比较,如果找到,则返回当前节点,否则进行右递归查找.
- 如果右递归中序查找找到就返回,否则返回空
后序查找的思路 - 判断当前节点的左子节点是否为空,如果不为空,则递归后序查找
- 如果找到,就返回,如果没有找到就判断当前节点的右子节点是否为空,如果不为空,则右递归后续查找
- 就和当前节点进行比较,如果是,则返回,否者返回null
package com.atguigu.tree;
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree=new BinaryTree();
//创建需要的节点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "无用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜");
// 说明
/**
* 我们先手动创建该二叉树,后面我们学习以递归的方式创建二叉树
*
*/
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
//测试,前序遍历
System.out.println("前序遍历================");
binaryTree.preOrder();
System.out.println("中序遍历=============");
binaryTree.infixOrder();
System.out.println("后序遍历============");
binaryTree.postOrder();
//
System.out.println("前序遍历方式");
HeroNode heroNode = binaryTree.preOrderSearch(5);
System.out.println(heroNode);
System.out.println("中序遍历方式");
HeroNode heroNode1 = binaryTree.infixOrderSearch(5);
System.out.println(heroNode1);
System.out.println("后续遍历方式");
HeroNode heroNode2 = binaryTree.postOrderSearch(5);
System.out.println(heroNode2);
}
}
//定义一个BinaryTree 二叉树
class BinaryTree{
private HeroNode root;//根节点
public void setRoot(HeroNode root){
this.root=root;
}
//前序遍历
public void preOrder(){
if(this.root!=null){
this.root.preOrder();
}else {
System.out.println("当前二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder(){
if(this.root!=null){
this.root.infixOrder();
}else {
System.out.println("当前二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder(){
if(this.root!=null){
this.root.postOrder();
}else {
System.out.println("当前二叉树为空,无法遍历");
}
}
//前序遍历查找
public HeroNode preOrderSearch(int no){
if(root!=null){
return root.preOrderSearch(no);
}else {
return null;
}
}
//中序遍历
public HeroNode infixOrderSearch(int no){
if(root!=null){
return root.infixOrderSearch(no);
}else {
return null;
}
}
//中序遍历
public HeroNode postOrderSearch(int no){
if(root!=null){
return root.postOrderSearch(no);
}else {
return null;
}
}
}
//先创建HeroNode节点
class HeroNode{
private int no;
private String name;
private HeroNode left;//默认null
private HeroNode right;//默认null
public HeroNode(int no, String name) {
this.no=no;
this.name=name;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
//编写 前序遍历的方法
public void preOrder(){
System.out.println(this);//先输出当前节点(父节点)
//判断递归向左子树前序遍历
if(this.left!=null){
this.left.preOrder();
}
//递归向右子树前序遍历
if(this.right!=null){
this.right.preOrder();
}
}
//中序遍历
public void infixOrder(){
//递归向左子树中序遍历
if(this.left !=null){
this.left.infixOrder();
}
//输出父节点
System.out.println(this);
//如果右子树不为空,我们递归中序遍历
if(this.right!=null){
this.right.infixOrder();
}
}
//后续遍历
public void postOrder(){
if(this.left!=null){
this.left.postOrder();
}
if (this.right!=null){
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
/**
*
* @param no 编号查找的no
* @return 如果找到返回no,如果没有找到返回null
*/
public HeroNode preOrderSearch(int no){
System.out.println("进行前序遍历查找");
//比较当前节点是不是
if(this.no==no){
return this;
}
//判断当前节点的左子节点是否为空,如果不为空,则递归查找
HeroNode resNode=null;
if(this.left!=null){
resNode=this.left.preOrderSearch(no);
}
if(resNode!=null){
return resNode;//这里我们找到就返回,不用在进行后面的比较了.
}
//左递归前序查找,找到节点,则返回,否则继续判断
//当前的节点的右子节点是否为空,如果不为空,则则继续向右递归前序查找
if(this.right!=null){
resNode=this.right.preOrderSearch(no);
}
return resNode;
}
/**
*
* @param no 编号查找的no
* @return 如果找到返回no,如果没有找到返回null
*/
public HeroNode infixOrderSearch(int no){
//判断当前节点的左子节点是否为空,如果不为空,则递归查找
HeroNode resNode=null;
if(this.left!=null){
resNode=this.left.infixOrderSearch(no);
}
if(resNode!=null){
return resNode;//这里我们找到就返回,不用在进行后面的比较了.
}
System.out.println("进行中序查找");
//比较当前节点是不是
if(this.no==no){
return this;
}
//左递归中序查找,找到节点,则返回,否则继续判断
//当前的节点的右子节点是否为空,如果不为空,则则继续向右递归中序查找
if(this.right!=null){
resNode=this.right.infixOrderSearch(no);
}
return resNode;
}
/**
*
* @param no 编号查找的no
* @return 如果找到返回no,如果没有找到返回null
*/
public HeroNode postOrderSearch(int no){
//判断当前节点的左子节点是否为空,如果不为空,则递归后续查找
HeroNode resNode=null;
if(this.left!=null){
resNode=this.left.postOrderSearch(no);
}
if(resNode!=null){
return resNode;//这里我们找到就返回,不用在进行后面的比较了.
}
//左递归中序查找,找到节点,则返回,否则继续判断
//当前的节点的右子节点是否为空,如果不为空,则则继续向右递归后续查找
if(this.right!=null){
resNode=this.right.postOrderSearch(no);
}
if(resNode!=null){
return resNode;//这里我们找到就返回,不用在进行后面的比较了.
}
System.out.println("进入后续遍历查找");
//如果左右子树都没有找到,比较当前节点是不是
if(this.no==no){
return this;
}
return resNode;
}
}
二叉树-删除节点
要求
- 如果删除的节点是叶子节点,则删除该节点
- 如果删除的节点是非叶子节点,则删除该子树(比如3号,我们删除这个子树,3,4,5号)
- 测试,删掉5号叶子节点和3号子树
思路分析完成删除节点的操作,满足上面的要求 - 首先考虑如果树是空树root,只有一个root节点,则等价将二叉树置空.
- 因为我们的二叉树是单项的(说白了子节点找不到父节点,但是父亲节点能找到子节点),所以我们是判断当前节点的子节点,是否需要删除,而不能去判断当前这个节点是不是需要删除的节点,
- 如果当前节点的左子节点不为空,并且左子节点no就是要删除的节点,我们就将this.left=null.并且返回,结束递归删除,
- 如果当前节点的右子节点不为空,并且右子节点no就是要删除的节点,我们就将this.right=null,并且返回,结束递归删除
- 上面两步都没有找到并删除节点,我们就需要分别向左子树进行递归删除
- 如果左子树没有删除成功,我们就向右子树进行删除递归删除.
代码实现
package com.atguigu.tree;
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree=new BinaryTree();
//创建需要的节点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "无用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜");
// 说明
/**
* 我们先手动创建该二叉树,后面我们学习以递归的方式创建二叉树
*
*/
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
System.out.println("测试一把,删除节点的代码");
System.out.println("删除前,前序遍历");
binaryTree.preOrder();
binaryTree.delNode(3);
System.out.println("删除后,前序遍历");
binaryTree.preOrder();
}
}
//定义一个BinaryTree 二叉树
class BinaryTree{
private HeroNode root;//根节点
public void setRoot(HeroNode root){
this.root=root;
}
//前序遍历
public void preOrder(){
if(this.root!=null){
this.root.preOrder();
}else {
System.out.println("当前二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder(){
if(this.root!=null){
this.root.infixOrder();
}else {
System.out.println("当前二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder(){
if(this.root!=null){
this.root.postOrder();
}else {
System.out.println("当前二叉树为空,无法遍历");
}
}
//删除节点
public void delNode(int no){
if(root!=null){
//如果只有一个root节点,这立即判断root是不是要删除的节点
if(root.getNo()==no){
root=null;
}else {
//递归删除
root.delNode1(no);
}
}else {
System.out.println("这个是一个空树,不能删除");
}
}
}
//先创建HeroNode节点
class HeroNode{
private int no;
private String name;
private HeroNode left;//默认null
private HeroNode right;//默认null
public HeroNode(int no, String name) {
this.no=no;
this.name=name;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
//递归删除节点
/**
* - 如果删除的节点是叶子节点,则删除该节点
* - 如果删除的节点是非叶子节点,则删除该子树(比如3号,我们删除这个子树,3,4,5号)
*/
public void delNode1(int no){
//2.如果当前节点的左节点不为空,并且左子节点就是要删除的节点,就将this.left=null,并返回
if(this.left!=null&&this.left.no==no){
this.left=null;
return;
}
//3.如果当前节点的右节点不为空,并且右子节点就是要删除的节点,就将this.right=null,并返回
if(this.right!=null&&this.right.no==no){
this.right=null;
return;
}
//4.如果2.3部都没有完成,我们就需要向左子树进行递归删除
if(this.left!=null){
this.left.delNode1(no);
}
//我们2.3.4都没有删除,我们向右子树进行递归删除
if(this.right!=null){
this.right.delNode1(no);
}
}
//编写 前序遍历的方法
public void preOrder(){
System.out.println(this);//先输出当前节点(父节点)
//判断递归向左子树前序遍历
if(this.left!=null){
this.left.preOrder();
}
//递归向右子树前序遍历
if(this.right!=null){
this.right.preOrder();
}
}
//中序遍历
public void infixOrder(){
//递归向左子树中序遍历
if(this.left !=null){
this.left.infixOrder();
}
//输出父节点
System.out.println(this);
//如果右子树不为空,我们递归中序遍历
if(this.right!=null){
this.right.infixOrder();
}
}
//后续遍历
public void postOrder(){
if(this.left!=null){
this.left.postOrder();
}
if (this.right!=null){
this.right.postOrder();
}
System.out.println(this);
}
}
顺序存储二叉树
基本说明
- 从数据存储来看,数组存储方式和树的存储方式可以相互转换,即数组可以转换成树.树叶可以装换成为数组,示意图
要求
- 右图的二叉树的节点,要求以数组的方式存放 arr:[1,2,3,4,5,6,6]
- 要求在遍历数组arr时,仍然可以以前序遍历中序遍历和后序遍历的方式完成节点的遍历
顺序存储二叉树特点
- 顺序二叉树通常只考虑完全二叉树
- 第n个元素的左子节点2*n+1
- 第n个元素的右子节点为2*n+2
- 第n个元素的父节点为(n-1)/2
- n:表示二叉树中第几元素(按0开始编号,如图所示)
顺序存储二叉树代码实现
需求:给你一个数组{1,2,3,4,5,6,7},要求以二叉树前序遍历的方式进行遍历,前序遍历的结果应当为1,2,3,45,3,6,7
代码实现
package com.atguigu.tree;
public class ArrBinaryTreeDemo {
public static void main(String[] args) {
int[] arr={1,2,3,4,5,6,7};
//创建一个ArrBinaryTree
ArrBinaryTree arrBinaryTree=new ArrBinaryTree(arr);
arrBinaryTree.preOrder(0);//1,2,4,5,3,6,7
System.out.println();
arrBinaryTree.prOrder();//因为我们方法重载,每次传递进去的都是0这个下标,我们直接进行了重载
}
}
// 编写一个ArrayBinaryTree,实现顺序存储二叉树遍历
class ArrBinaryTree{
private int[] arr;//存储数据节点的数组
public ArrBinaryTree(int[] arr){
this.arr=arr;
}
//重载preOrder
public void prOrder(){
this.preOrder(0);
}
//编写一个方法,完成顺序存储二叉树的前序遍历
//这个index数组的下标,我们分析时候的n
public void preOrder(int index){
//如果数组为空,或者arr.length=0
if(arr==null||arr.length==0){
System.out.println("数组为空,不能按照二叉树的前序遍历");
}
//输出当前这个元素(前序遍历,先输出当前元素,爱在向左然后向右边)
System.out.print(arr[index]+ "\t");
//向左递归遍历
if(index*2+1<arr.length){
preOrder(2*index+1);
}
//向右边递归遍历
if(index*2+2<arr.length){
preOrder(2*index+2);
}
}
}
顺序存储二叉树应用实例
在八大排序算法中的堆排序,就会使用到顺序存储二叉树,关于堆排序,我们后面再说.
顺序存储二叉树–线索化解二叉树
先看一个问题
将数列{1,3,6,8,10,14}构建成一颗二叉树
问题分析
- 当我们对上面的二叉树进行中序遍历时,数列为{8,3,10,1,6,14}
- 但是6,8,10,14这几个节点的左右指针,并没有完全利用上
- 如果我们希望充分利用各个节点的左右指针,让各个节点可以执行自己的前后节点,怎么办?
- 解决方案,线索化二叉树
线索化二叉树的概念(基本介绍)
- n个节点的二叉树链表中含有n+1 ==[公式:2n-(n-1)=n+1] (如何理解,就是每个节点最开始的时候是有两个空指针域,但是我们去除root节点,就有n-1个节点是占用了指针域的.root节点是没有前驱节点的.所有我们2n-(n-1))==个空指针域,利用二叉链表中的空指针域,存放指向该结点在某种遍历次序下的前驱和后继节点的指针(这种附加的指针称为"线索")
- 这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree).根据线索性质的不同,线索二叉树可分为前序线索二叉树,中序线索二叉树,后续线索二叉树三种.
- 一个节点的前一个节点,称为 == 前驱== 节点(经过前序,中序,后序后,我们该节点的前一个节点是前前驱,后一个节点是后继,例如[1,3,6,8,10,14],中序后[8,3,10,1,14,6],那么10的前驱节点为3,后继节点为1)
- 一个节点的后一个节点,称为 后继节点
线索化二叉树的应用实例
中序线索化二叉树思路分析:
- 中序遍历的结果{8,3,10,1,14,16}
== 当线索化二叉树后,Node节点的属性left和right,有如下情况==
- left 指向的是左子树,也可能是指向的前驱节点,比如
1
节点,left指向的左子树,而10
节点的left指向的就是前驱节点. - right指向的是右子树,也有可能是指向后继节点,比如
1
节点right指向的是右子树,而10
号节点的right指向的是后继节点.
中序线索二叉树代码实现
package com.atguigu.tree.Threaded;
public class ThreadedBinaryTreeDemo {
public static void main(String[] args) {
//测试一把中序线索二叉树的功能是否正确
HeroNode root = new HeroNode(1, "tom");
HeroNode node2 = new HeroNode(3, "jack");
HeroNode node3 = new HeroNode(6, "smith");
HeroNode node4 = new HeroNode(8, "mary");
HeroNode node5 = new HeroNode(10, "king");
HeroNode node6 = new HeroNode(14, "Jerry");
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
//测试线索化一把
ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
threadedBinaryTree.setRoot(root);
threadedBinaryTree.threadedNodes();
//如何测试(我们看10这个点的前驱和后继节点)
HeroNode leftNode = node5.getLeft();
System.out.println("10号节点的前驱节点"+leftNode);
HeroNode rightNode = node5.getRight();
System.out.println("10号节点的后继节点:"+rightNode);
}
}
//定义一个ThreadedBinaryTree 二叉树,实现了线索化功能二叉树
class ThreadedBinaryTree{
private HeroNode root;//根节点
//为了现实线索化,我们需要创建一个指向当前节点的前驱节点的指针
//在递归进行线索化时间,pre总是保留前一个节点
private HeroNode pre=null;
public void setRoot( HeroNode root){
this.root=root;
}
//重载一把线索化的方法
public void threadedNodes(){
this.threadNodes(root);
}
//编写对二叉树进行线索化,中序线索化的方法
/**
*
* @param node 就是当前需要线索化的节点
*/
public void threadNodes(HeroNode node){
//如果node==null,不能线索化
if(node==null){
return;
}
//中序遍历,我们地规矩先线索化左边子树
threadNodes(node.getLeft());
//在线索化当前节点[有点难度]
/**
* 处理当前节点的前驱节点
*/
if(node.getLeft()==null){
//当前节点的左指针指向前驱节点
node.setLeft(pre);
//修改当前节点的左指针类型
node.setLeftType(1);
}
/**
* 处理后继节点
*/
if(pre!=null&&pre.getRight()==null){
//让前驱节点的右指针指向当前的节点
pre.setRight(node);
//修改前驱节点的右指针类型
pre.setRightType(1);
}
//每处理一个节点后,然当前节点是下一个节点的前驱节点
pre=node;
//再递归线索化右子树
threadNodes(node.getRight());
}
}
//先创建 节点
class HeroNode{
private int no;
private String name;
private HeroNode left;//默认null
private HeroNode right;//默认null
/**
* 如果leftType==0,表示指向的是左子树,如果是1表示指向前驱节点
* 如果rightType==0表示指向右子树,如果1表示指向后继节点
*/
private int leftType;
private int rightType;
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
public HeroNode(int no, String name) {
this.no=no;
this.name=name;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
}
遍历线索化二叉树
对于前面中序后的线索二叉树进行遍历.
分析:因为线索化后,各个节点指向有编号,因此 原来的遍历方式不能使用这个时候,需要使用新的方式遍历线索化二叉树,各个节点可以通过线性方式遍历,因此无需使用递归方式,这样也提高了遍历的效率,遍历的次序应当和中序遍历保持一致
package com.atguigu.tree.Threaded;
public class ThreadedBinaryTreeDemo {
public static void main(String[] args) {
//测试一把中序线索二叉树的功能是否正确
HeroNode root = new HeroNode(1, "tom");
HeroNode node2 = new HeroNode(3, "jack");
HeroNode node3 = new HeroNode(6, "smith");
HeroNode node4 = new HeroNode(8, "mary");
HeroNode node5 = new HeroNode(10, "king");
HeroNode node6 = new HeroNode(14, "Jerry");
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
//测试线索化一把
ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
threadedBinaryTree.setRoot(root);
threadedBinaryTree.threadedNodes();
//如何测试(我们看10这个点的前驱和后继节点)
HeroNode leftNode = node5.getLeft();
System.out.println("10号节点的前驱节点"+leftNode);
HeroNode rightNode = node5.getRight();
System.out.println("10号节点的后继节点:"+rightNode);
System.out.println("使用线性化的方式,遍历线索化二叉树");
threadedBinaryTree.threadedLists();
}
}
//定义一个ThreadedBinaryTree 二叉树,实现了线索化功能二叉树
class ThreadedBinaryTree{
private HeroNode root;//根节点
//为了现实线索化,我们需要创建一个指向当前节点的前驱节点的指针
//在递归进行线索化时间,pre总是保留前一个节点
private HeroNode pre=null;
public void setRoot( HeroNode root){
this.root=root;
}
//重载一把线索化的方法
public void threadedNodes(){
this.threadNodes(root);
}
//编写对二叉树进行线索化,中序线索化的方法
/**
*
* @param node 就是当前需要线索化的节点
*/
public void threadNodes(HeroNode node){
//如果node==null,不能线索化
if(node==null){
return;
}
//中序遍历,我们地规矩先线索化左边子树
threadNodes(node.getLeft());
//在线索化当前节点[有点难度]
/**
* 处理当前节点的前驱节点
*/
if(node.getLeft()==null){
//当前节点的左指针指向前驱节点
node.setLeft(pre);
//修改当前节点的左指针类型
node.setLeftType(1);
}
/**
* 处理后继节点
*/
if(pre!=null&&pre.getRight()==null){
//让前驱节点的右指针指向当前的节点
pre.setRight(node);
//修改前驱节点的右指针类型
pre.setRightType(1);
}
//每处理一个节点后,然当前节点是下一个节点的前驱节点
pre=node;
//再递归线索化右子树
threadNodes(node.getRight());
}
//遍历中序后的线索化二叉树的方法
public void threadedLists(){
//定义一个遍历,临时存储当前遍历的节点
HeroNode node=root;
while (node!=null){
//循环的找到leftType==1这个节点,就是8这个节点
//后面会随着遍历而变化,因为当leftType==1,说明该节点是按照线索化处理后的有效节点.
while (node.getLeftType()==0){
node=node.getLeft();
}
//打印当前节点
System.out.println(node);
//如果当前节点的右指正指向的是后继节点,就一直输出
while (node.getRightType()==1){
//获取到当前节点的后继节点
node=node.getRight();
System.out.println(node);
}
//替换遍历的节点
node=node.getRight();
}
}
}
//先创建 节点
class HeroNode{
private int no;
private String name;
private HeroNode left;//默认null
private HeroNode right;//默认null
/**
* 如果leftType==0,表示指向的是左子树,如果是1表示指向前驱节点
* 如果rightType==0表示指向右子树,如果1表示指向后继节点
*/
private int leftType;
private int rightType;
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
public HeroNode(int no, String name) {
this.no=no;
this.name=name;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
", name='" + name + '\'' +
'}';
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
}