自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 【嵌入式通讯协议】SPI和QSPI

SPI和QSPI通信协议技术解析

2025-06-13 16:55:11 884

原创 【Linux多线程编程】学习笔记2

本文主要介绍了Linux多线程编程中的三种同步机制:互斥量、读写锁和条件变量。

2025-05-29 09:32:15 846 1

原创 【Linux多线程编程】学习笔记1

本文介绍了Linux多线程编程的基础知识,包括线程的概念、创建、生命周期和控制。

2025-05-22 14:28:53 765

原创 【ZYNQ的Linux开发】AXI_DMA的使用

本文介绍了在Zynq平台上使用Linux下的AXI_DMA进行数据传输的完整流程。

2025-05-13 16:44:40 817

原创 【ZYNQ的Linux开发】UIO中断

本文介绍了在Zynq平台上使用Linux下的UIO(Userspace I/O)中断的实现方法。首先,硬件平台通过AXI GPIO模拟中断信号,并详细描述了UIO的基本概念、设备树配置、驱动加载以及相关文件的位置。接着,文章提供了设备树的配置示例,并通过命令行和应用程序测试验证了UIO中断的功能。测试结果表明,UIO中断能够成功触发,但需手动使能中断以支持连续中断处理。最后,文章列出了相关参考资料,供进一步学习和研究。

2025-05-13 16:38:09 848

原创 【ZYNQ的Linux开发】GPIO中断

本文介绍了在Zynq平台上使用Linux内核实现GPIO中断的两种方式:阻塞IO和异步IO。

2025-05-13 16:30:01 315

原创 【ZYNQ的Linux开发】BRAM的使用

本文介绍了在Zynq平台上使用Linux系统访问BRAM的方法。首先,通过硬件平台配置和地址映射,确保BRAM的物理地址可以被访问。接着,利用Linux系统中的/dev/mem设备和mmap函数,将物理地址映射到用户空间,实现对BRAM的直接读写操作。文章还提供了详细的代码示例,展示了如何通过应用程序向BRAM写入数据并读取验证。最后,通过测试结果验证了该方法的有效性。参考资料包括相关技术文档和博客链接,供进一步学习使用。

2025-05-13 16:24:44 819

原创 【ZYNQ的Linux开发】AXI_GPIO的使用

本文介绍了在Zynq平台上使用Linux系统操作AXI GPIO的方法。首先,通过sysfs文件系统在命令行中测试GPIO的访问,具体步骤包括导出GPIO、设置方向和控制值。接着,提供了一个C语言应用程序示例,展示了如何在程序中实现GPIO的导出、方向设置和值切换。该程序通过打开和写入sysfs中的相关文件,实现了GPIO的持续切换操作。最后,提供了参考资料链接,供进一步学习AXI GPIO的使用。

2025-05-13 16:16:49 198

原创 【李宏毅深度学习】逻辑回归

图像化表示第一步与线性回归的区别(有无激活函数)

2024-03-21 20:17:38 264 1

原创 【李宏毅深度学习】分类问题

这样会产生过拟合问题,因此要减少参数的数量。

2024-03-21 16:56:52 156 1

原创 【李宏毅深度学习】回归问题(regression)

第一个选择的model效果不太好,因此我们可以选择更复杂的model ,但是更复杂的模型可能会产生过拟合问题。我们可以重新定义loss函数来防止过拟合问题,这个方法叫做正则化(regularization)。我们可以把想到的所以特征都加进去,但这样也容易产生过拟合问题。返回到最初我我们选择的模型,重新选择模型。调整lamada可以调整曲线的平滑程度。把模型写成线性模型的形式如下。

2024-03-19 15:43:55 232 1

原创 【李宏毅深度学习】反向传播

为了更有效率的计算梯度,我们用反向传播。

2024-03-19 13:32:45 447 1

原创 【李宏毅深度学习】深度学习介绍

我们需要决定神经网络的结构,到底选多少层,每层有多少神经元通常靠经验和直觉决定。用梯度下降法选择更好的参数,这里与前面一样只不过是函数变复杂了。对于第二、三步,需要调整参数使loss越小越好。深度学习的深度表示有很多的隐藏层。

2024-03-18 14:25:41 584 1

原创 【李宏毅深度学习】深度学习简介

实际在做梯度下降时,会把很多的数据分成很多的小数据集(batch),只用一个batch算loss。每一次更新参数叫做update,把所有的batch都用过一遍叫做1epoch。可以用relu来代替sigmoid,两个relu可以组成sigmiod。调整参数可以获得不同形状的sigmoid函数,就可以近似预测函数。任何一个分段线性曲线都可以用常数加上特殊的函数表示。因此新的模型由简单的线性模型变成了更多参数的函数。当分割的片段足够多就可以表示连续的曲线。未知函数的更复杂,模型更新为。

2024-03-16 20:42:12 486 1

原创 【李宏毅深度学习】机器学习简介

优化参数到使loss变小,优化过程:

2024-03-16 20:06:38 598 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除