- 博客(162)
- 收藏
- 关注
原创 为什么 RAG 会失败以及如何解决?揭秘背后三大致命缺陷!
RAG(检索增强生成)它把检索系统和生成式 AI 结合起来,让 AI 回答得更准确、更贴合上下文。和普通的大语言模型(LLM)不同,RAG 不只是依赖训练时学到的知识,而是能实时从外部信息源查找内容,并用这些信息来生成更可靠的回答。RAG 的核心组成负责从外部数据源提取相关信息,确保 AI 的回答既准确又及时。检索做得好,AI 的输出质量就高;如果检索设计不合理,可能会导致无关答案、幻觉(AI 瞎编)或数据缺失。由大语言模型(LLM)来处理用户提问,并结合检索到的内容生成回答。
2025-05-23 13:56:19
1229
原创 玩转RAG应用:如何选对Embedding模型?
MTEB 是一个包含广泛文本嵌入(Text Embedding)的基准测试,它提供了多种语言的数十个数据集,用于各种 NLP 任务,例如文本分类、聚类、检索和文本相似性。MTEB 提供了一个公共排行榜,允许研究人员提交他们的结果并跟踪他们的进展。MTEB 还提供了一个简单的 API,允许研究人员轻松地将他们的模型与基准测试进行比较。下面我们以旧版本为例(其中有中文等语言的筛选),看下榜单怎么快速筛序我们想要的模型。
2025-05-23 13:52:03
929
原创 字节终于开源“扣子”同款引擎了!FlowGram:AI 时代的可视化工作流利器
FlowGram 的开源,无疑为开发者社区带来了一份厚礼。它不仅仅是一个可视化流程工具,更是字节跳动在探索 AI 时代应用构建模式的一次重要成果分享。其双布局模式带来的灵活性、AI 辅助功能的智能化、以及底层高性能架构的支撑,让它在标准化流程和自由探索性任务中都能游刃有余。对于想要构建自动化流程、特别是涉及 AI 逻辑的应用,或者对低代码/无代码平台感兴趣的开发者和企业来说,FlowGram 提供了一个值得认真研究和尝试的强大开源解决方案。
2025-05-22 15:36:23
1017
1
原创 深入理解AI编码edit:原理、架构与实现
用户配置示例models:roles:- editedit: |{{#if prefix}}前缀内容: {{{prefix}}}{{/if}}需要编辑的代码:```{{#if suffix}}后缀内容: {{{suffix}}}{{/if}}编辑指令: {{{userInput}}}请提供完整的修改后代码,保持编程风格一致。状态管理:简洁有效的状态机设计,跟踪编辑流程的各个阶段提示词系统:灵活的模板系统传递用户编辑意图给大语言模型集成IDE差异功能。
2025-05-22 15:17:40
996
原创 Claude Task Master (MCP) : AI驱动开发的新范式与AI编辑器集成实战
自定义任务模板任务钩子和生命周期事件// 任务状态变更时触发自定义操作与外部系统集成Claude Task Master代表了AI驱动开发的新范式,将AI从简单的代码生成工具提升为全流程开发伴侣。通过与Cursor等先进编辑器的深度集成,它实现了从需求分析、任务规划到代码实现、测试验证的全流程智能化,显著提升了开发效率和代码质量。智能需求解构:将非结构化PRD转化为结构化任务复杂度科学评估:多维度分析任务复杂度,指导拆分策略依赖智能管理:自动构建和维护任务依赖图,最大化并行开发上下文感知协作。
2025-05-21 22:31:18
1400
原创 Agentic Loop与MCP:大模型能力扩展技术解析
MCP(Model Context Protocol)是一种用于大语言模型与外部工具交互的协议框架。它允许大语言模型能够调用各种外部工具来扩展其能力边界,如访问文件系统、搜索引擎、数据库等。MCP的技术实现是一个多层次、多组件协作的过程,它通过标准化的协议实现了大语言模型与外部工具的无缝交互。通过Agentic Loop循环机制,系统能够支持复杂任务的递进式解决,而基于JSON-RPC 2.0协议的通信方式则确保了通信的可靠性和跨平台兼容性。
2025-05-21 22:23:08
857
原创 AI Agent主流框架对比
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;● 中度应用:Langflow (丰富的组件, 拖拉拽, 可扩展性高, 学习难度不太大)
2025-05-21 22:19:09
763
原创 快速用上专属于自己的大模型&智能体
maxkb.cn/好了,基本就是这些啦,再推荐一本关于大模型的书,叫做《大模型导论》,希望AI时代,我们每个人都能找准自己的定位,利用好AI,增强自己,而不是被取代。最后再多说一句,大模型飞速发展,存在信息差是肯定的,如果你真的不了解AI,短期内也不想了解,就不要轻易相信那些在你面前扯各种AI概念的人,尤其是不熟的人,现在这方面的诈骗也挺多的,保护好自己。
2025-05-20 15:09:36
558
原创 LangChain 框架下的 AI Agent 构建与部署实践
什么是LangChain?LangChain是一个用于开发由语言模型驱动的应用程序的框架。它允许开发者将大型语言模型(LLMs)与其他计算或知识源连接起来,从而创建更强大、更灵活的AI应用。LangChain核心组件Models:支持多种语言模型接口Prompts:提示管理、优化和序列化Memory:短期和长期记忆管理Indexes:文档加载、处理和检索Chains:调用序列和组合Agents:动态决策和工具使用Callbacks:日志和流式传输。
2025-05-20 12:15:00
666
原创 LangSmith与LangGraph深度解析:构建下一代AI Agent的基石
LangSmith与LangGraph不仅代表着技术工具的进步,更预示着一个新纪元的开启:当AI系统的开发过程变得完全透明可控,当复杂认知任务的编排如同搭积木般简单,人类终于站在了构建可靠智能系统的门槛之上。这两个组件的演化轨迹,正勾勒出未来AGI开发平台的雏形——在这里,每个开发者都能像指挥交响乐团般,优雅地驾驭智能的洪流。
2025-05-20 12:00:00
1510
原创 我们做了可能是第一个支持了MCP服务的ERP/WMS系统?
我们之前开发了一个SPMS的智能生产管理系统,其中包含了很多资源管理(ERP)库存管理(WMS)生产管理(MES)等功能,前段时间MCP在国内火了起来,我们也顺带的给这个开源管理系统加上了几个MCP工具的功能,可以参考之前我们发布的文章我们和目前主流的STDIO模式的MCP工具不一样,我们使用的是MCP的SSE/HTTP模式,所以本文不涉及STDIO模式的MCP的实现和内容。今天我们分享了在这个开源后台管理系统上实现MCP的简单过程说明,也演示了实现之后的效果。虽然目前还需要依赖各种AI。
2025-05-19 21:10:39
677
原创 MCP和Function Calling的区别是什么?
(本文可能简称为函数调用),是部分大模型中内置的意图识别能力,能通过大模型分析用户输入的自然语言,识别关联到传入的工具列表的意图中去。请注意,大模型本身自己是不会直接去调用这些函数的。大模型会根据函数调用的意图,生成一个函数调用的指令,然后让模型的调用方去执行。我们通过天气查询示例来演示大模型如何调用函数。好像并没有什么问题是吧。可是,随着工具越来越多,我们需要在客户端上写各种各样工具的调用和声明代码,工具越来越庞大不说,而且也更难维护了。今天用了两个对比图和简单的文字来总结了一下和MCP。
2025-05-19 21:06:50
957
原创 大模型时代,为什么模型都是多少B?
在当今这个被大模型技术重塑的时代,无论是在科技新闻的报道中,还是专业技术论坛的讨论里,我们常常会看到诸如“某模型是70B”“13B模型表现出色”这样的表述。这里的“B”究竟代表着什么?为何模型规模要用这样的度量方式来呈现?它对于模型的性能、应用乃至整个大模型技术发展格局又有着怎样的意义?带着这些疑问,让我们一同深入探索大模型规模背后的奥秘。在大模型时代,用“多少B”来描述模型规模并非偶然,它深刻反映了模型的核心属性——参数数量,而参数数量又紧密关联着模型的复杂度、学习能力以及实际表现。
2025-05-19 21:01:50
828
原创 本地部署 Dify + Deepseek (实操版)
我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2025-05-19 20:49:58
966
原创 从零开发 MCP 服务:原理到实战(实现飞书文档 MCP)
MCP (Model Context Protocol) 是由 Anthropic 公司推出的标准化协议,允许 AI 模型通过统一接口与外部工具和服务进行通信。MCP 解决了大型语言模型无法直接访问外部最新数据和系统的限制,是一个"AI 能力扩展协议"。我第一次接触 MCP 是在使用 Cursor 编辑器时,它能够通过 MCP 连接本地代码库和外部工具,极大提升了开发效率。MCP 的强大之处在于统一了工具调用格式,提供了请求/响应的规范定义,使得 AI 可以像调用函数一样使用外部工具。
2025-05-19 20:43:25
1195
原创 一文搞懂什么是Vibe Coding?
Vibe 在英语的意思就是”氛围,感觉“的意思。所以Vibe Coing,直译过来就是氛围编程或者叫沉浸式编程。这种沉浸式编程不仅仅要我们沉浸在编码的环境中,更重要的是它改变了我们之前写代码的方式。根本不关心我们是怎么样实现代码的,核心关注点在于代码生成的结果对不对,能不实现我们预期想法。至于实现逻辑,底层细节这些繁琐的活,全部交给AI去编程。我们只需要检查最终的效果,要是哪些地方不满意,哪里有错误,就直接改prompt,重新提出需求,AI会自动帮我们调整和优化,直到最后的结果完全符合我们的预期为止。
2025-05-17 18:00:00
1196
原创 AGI时代到来?Manus实战测评篇
2025年3月6日,AI领域迎来了一场“地震级”发布,全球首款通用AI Agent产品Manus一夜刷屏。在国内讨论度超级高,咸鱼上Manus的邀请码也被炒地非常昂贵。当时我也对Manus十分好奇,看到官方推出的视频,能够深度调用,数据分析,能画图表,能开发游戏甚至会剪辑。功能如此强大,无不让人感到好奇和佩服。如此强大的产品推出,前来围观的人肯定是数不胜数。我记得Manus发出没多久,就有高手在复刻了一个openManus,也有网络上不少贬低Manus的声音。
2025-05-17 13:00:00
1727
原创 十分钟搞懂mcp
最近看到很多文章都在谈mcp,但是很多文章都会给人一种感觉——看了,也好像啥也没看。本质上还是没懂,今天我们一起来学习下啥是mcp,让我们在一个极短的时间内,以说人话的方式,快速吃透它,让它为您所用。
2025-05-17 12:45:00
1570
原创 零代码教你写出自己的扩展小插件
我们只需要把对应的代码框住,让AI给我们生成详细仔细的解释,遇到不清不楚的问题,再不断不断的询问AI,让它不断的教会我们。• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。要看懂AI写的代码,想必会有点困难。网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
2025-05-17 12:30:00
905
原创 深入解析:DeepSeek R1与V3的架构与应用差异
在本文中,我们详细探讨了DeepSeek V3和R1在模型定位、架构设计、性能表现、应用场景、部署成本以及开源生态等方面的差异。这两款模型各自展现了深度求索(DeepSeek)公司在AI技术发展上的不同侧重和创新理念。:作为一个通用的自然语言处理模型,V3凭借其混合专家架构(MoE)、多头隐式注意力(MLA)及动态负载均衡机制,在多模态任务处理和长文本生成方面表现出色。其低成本的API定价和广泛的硬件兼容性,使得V3成为企业级NLP任务的理想选择。
2025-05-17 12:00:00
636
原创 Tokens 是什么, 为什么大模型按Tokens 收费, 和API调用收费的区别
在自然语言处理 (NLP) 和大语言模型(如 GPT 系列)中,token是文本数据的基本单位。一个词(例如,“apple”)。一个字符(例如,“a” 或者标点符号)。甚至是子词、词根或其他形式的文本碎片。对于英语等语言,通常一个 token 大致相当于一个单词或者标点符号。但在一些语言中,token 可能会更小,例如在中文中,每个字符(如一个汉字)通常被视为一个 token。混合收费模式:可能有基础的 API 调用费用,再加上根据 tokens 数量收取的额外费用。Tokens。
2025-05-17 12:00:00
869
原创 DeepSeek+Coze实战:如何从0到1打造一个热点监控智能体
本文介绍了如何使用Coze搭建热点监控智能体,帮助我们自动收集和分析抖音平台的热门视频数据。通过工作流实现自动化监控,该智能体能够每天定时采集指定关键词的热门视频,并将数据自动整理存储到飞书多维表格中,便于后续分析。这份《AI产品经理学习资料包》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以在文末CSDN官方认证二维码免费领取【保证100%免费】资料包:CSDN大礼包:《对标阿里黑客&网络安全入门&进阶学习资源包》免费分享AI产品经理,0基础小白入门指南。
2025-05-16 18:15:00
616
原创 港大团队开源LightRAG:知识图谱+双层检索,复杂问答准确率飙升30%
当前的检索增强生成(RAG)技术在实际应用中面临若干挑战。传统的RAG采用基于向量的扁平化数据表示,难以有效建模实体之间的复杂语义关系,导致在处理复杂领域知识时检索精度不足。此外,传统RAG在多实体关联推理中容易出现逻辑断层,且全量更新机制使得知识库的维护成本随数据规模指数增长。相比之下,LightRAG通过引入图结构和增量更新算法,大幅降低了计算开销,提高了系统在实时数据更新和复杂推理场景中的应用效能。
2025-05-16 17:45:00
882
原创 Manus平替方案:用DeepSeek+MCP Server构建AI自主工作流
在AI技术日新月异的今天,我们正见证着LLM(大语言模型)从"能说会道"向"能工巧匠"的进化。当Anthropic推出(MCP)时,它像一道闪电划破夜空——这个被称作"AI界的USB-C"的协议,正在重新定义人机协作的边界。作为一个沉迷于技术探索的开发者,我始终在寻找让AI真正"落地"的方法。当看到MCP协议支持本地文件操作、数据库访问甚至浏览器自动化时,一个大胆的想法在我脑中成型:能否在VS Code这个开发者主战场上,用零代码方案复刻类Manus的智能体能力。本文通过两个开源MCP Server。
2025-05-16 13:00:00
696
原创 RAG回答准确率暴涨300%!用Coze工作流进行数据结构化(附完整提示词)
在生成式人工智能(Generative AI)快速发展的当下,大语言模型(LLMs)的幻觉问题始终是制约其落地应用的关键瓶颈。检索增强生成(RAG)技术通过引入外部知识库,将动态检索与生成能力结合,为解决这一难题提供了重要思路。然而,RAG系统的核心性能——数据召回率,高度依赖于底层数据的质量与组织形式。尤其是一些领域文献,原始数据常以非结构化形式(如PDF论文、扫描文档、图像表格)存在,且包含冗余、噪声和碎片化信息。
2025-05-16 12:30:00
737
原创 MCP 哪家强?深度分析 Cline、Cursor、Trae、Coze 四大平台
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。Cursor 是一款基于 VSCode 开发的 AI 代码编辑器,集成了先进的人工智能模型,能够通过自然语言与开发者交互,自动生成、修改和优化代码,显著提升编程效率。网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
2025-05-16 12:30:00
1049
原创 别再为插件付费!5分钟自建Coze图像识别插件(付源码)
当你为Coze平台插件调用付费时,是否想过:那些看似神秘的插件开发,实则只需一杯咖啡的时间就能自主实现?本文将颠覆您对AI插件开发的认知——无需机器学习背景,不必研究复杂算法,以阿里云百炼大模型为基座,带你用5分钟完成一个专业级图像识别插件的开发全流程。在接下来的实战中,你将亲历从模型选型、代码编写到服务部署的完整闭环。即使你是首次接触大模型开发的工程师,也能轻松完成Coze插件开发。文末更附赠提示词工程秘籍,助你突破大模型应用效果天花板。
2025-05-16 12:00:00
1881
原创 字节「Coze 扣子」无需编程即可开发 AI 应用,实际体验如何?
大部分常用的 Python 库,在定义插件时都可以直接导入(比如 json,time,random)。其他一些必要的模块(比如 requests,datetime等),还可以从左侧的依赖包中添加,这就给了插件模块比代码模块高了几个维度的灵活性。
2025-05-15 16:45:10
680
原创 deepseek为什么现在感觉不火了?
deepseek就像那种只会写"Hello World"的实习生,表面贼快,实际上细节全崩了,幻觉一堆,问它:“请给我生成一个线程池的最佳配置方案”,它啪一下就给你拷一段阿猫阿狗的ExecutorService代码,不管你是CPU密集还是IO密集型任务。• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。deepseek目前,这块还是半吊子。
2025-05-15 16:40:36
1036
原创 Alphafold3技术详解,从网络原理理解生物分子大一统模型!
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。是一个纯蛋白质结构预测工具,有23个标记:20个标记代表标准氨基酸中的每一个,一个标记代表未知氨基酸,一个代表间隙(gap)的标记,以及一个用于掩码多序列比对(网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
2025-05-15 16:30:30
707
原创 Mamba技术背景详解:从RNN到Mamba一文搞定!
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。中间状态不会被保存,但对于向后传递计算梯度是必需的。网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。有了连续的输入信号,我们可以生成连续的输出,并且仅根据输入的时间步长对值进行采样,采样值就是我们的离散输出。
2025-05-15 16:29:33
1051
原创 一周跑了5场AI大模型面试,发现很少问传统八股了
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;三面应该是加面的大老板面,从交流可以看出来对整个大模型这块的理解还是很深刻的,收获不小。
2025-05-15 16:28:02
684
原创 国内大模型公司,粗略面经+感受+一些包裹
2023年三月前后,大模型突然国内火了起来,楼主就面了一些公司,有大厂有初创,最近挺多朋友聊大模型相关的内容,对面试也感兴趣,想这里综合写一下,也希望能和各位同行交流下。各种Norm,这个频率也不低,不过比较标准的内容,没有啥特意要说的,有的考手写,有的考概念和理解(为什么管用)。网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2025-05-15 12:00:00
888
原创 面了 minimax 大模型算法岗,问的贼细!
最近这一两周不少大厂都已经开始秋招面试了。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。今天分享我们一星球成员面试 minimax 大模型岗一面、二面面经。面试题涉及项目、论文、八股都会问到,难度中规中矩,想找大模型方向的同学可以了解下,有什么问题欢迎评论区交流后续我会继续分享同学们的面试经验,希望能够帮助大家拿下满意的 offer 这份《AI产品经理学习资料包》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以在文末CSDN官方认
2025-05-14 18:00:00
824
原创 一文彻底搞懂如何评估大模型 - 基准测试(Benchmark)
最近这一两周不少互联网公司都已经开始提前批面试了。不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。(Large Language Model,大型语言模型)中的Benchmark(基准测试)是用于衡量和比较不同LLM性能的一组经过精心设计的测试任务、问题和数据集。这些基准测试遵循标准化的流程,以评估LLM在核心语言处理任务上的表现。图片Benchmark。
2025-05-14 13:30:00
1347
原创 一文彻底讲透大模型 RAG 原理
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。本篇综述将带你全面了解 RAG,深入探讨其核心范式、关键技术及未来趋势,为读者和实践者提供对大型模型以及 RAG 的深入和系统的认识,同时阐述检索增强技术的最新进展和关键挑战。等工具,市场上涌现出更多针对性的 RAG 工具,例如:用途定制化,满足更加聚焦场景的需求;功能专业化,逐渐面向生产环境。
2025-05-14 13:00:00
1098
原创 美团开源首发INT8无损满血版DeepSeek R1
根据DeepSeek最新发布的技术报告,V3/R1突破性的训练成本控制主要依托FP8精度训练方案。FP8是一种典型的模型量化技术,相较于业界常用的BF16精度,FP8精度通过将数据位宽减半显著降低了单次计算开销,但也会带来一定的精度损失。在实践中,DeepSeek R1采用了混合精度训练机制有效缓解了精度损失问题。由于DeepSeek R1采用FP8精度训练,所以开源的原生权重就是FP8精度。
2025-05-14 12:30:00
928
原创 手把手教你本地部署DeepSeek+DiFy,构建智能体应用平台
RAG(Retrieval-Augmented Generation)检索增强生成是一种将外部知识检索与大语言模型生成能力结合的混合架构。其核心思想是通过检索外部知识库(如文档、数据库、网页等),弥补大模型静态训练数据的局限性;在生成答案时直接依赖检索到的证据,减少模型凭空编造内容的可能性,降低幻觉风险。RAG无需重新训练模型,仅需更新知识库即可适配不同专业领域(如医疗、法律)。类似将大模型视为一个“推理专家”,而RAG系统为其配备了一个“实时资料库助手”。
2025-05-14 12:15:00
1113
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人