奇异值分解SVD

1 基本定义

奇异值分解(singular value decomposition SVD)是一种矩阵因子分解的方法,是线性代数的概念。在统计学中被广泛的使用,成为一种重要的统计方法。在研究过程中可以用来实现缺失值的插补 MVI,也是一种较为常用的缺失值插补方法。[Miss value imuptation(MVI):a review and analysis of the literature(2006-2017)](https://www.yuque.com/strive-yang/gn28pq/zwn3z1r7qw0na52u)
任意一个$ m \times n $矩阵,都可以表示为三个矩阵的乘积(因子分解)形式,分别为 $m$阶正交矩阵、由降序排列的非负的对角元素组成的$m \times n$矩阵对角矩阵和$n$阶正交矩阵可以试着计算,以上便称为该矩阵的奇异值分解。矩阵的奇异值分解一定存在,但分解不唯一。

In my opinion,奇异值分解就是将矩阵进行分解的过程,可以对复杂的矩阵进行压缩,是一种数据压缩方法(通常与 PCA、LDA 等方法一同提及)。

2 奇异值分解定理

矩阵的奇异值是指,将一个非零的$m \times n$实矩阵 $A,A\in R^{m\times n}$,表示为以下三个实矩阵乘积形式的运算,即进行矩阵的因子分解:

A=UΣVTA=U\Sigma V^TA=UΣVT
其中UUUmmm阶正交矩阵(orthogonal matrix),VVVnnn阶正交矩阵,Σ\SigmaΣ是由降序排列的非负的对角元素组成的m×nm \times nm×n矩阵对角矩阵。
由正交矩阵和对角矩阵的性质可以得出以下公式来源于线性代数
UUT=IVVT=IΣ=diag(σ1,σ2,...,σp)σ1≥σ2≥...≥σp≥0p=min(m,n)UU^T=I\\ VV^T=I\\ \Sigma=diag(\sigma_1,\sigma_2,...,\sigma_p)\\ \sigma_1 \ge\sigma_2\ge ...\ge\sigma_p\ge0\\ p=min(m,n)UUT=IVVT=IΣ=diag(σ1,σ2,...,σp)σ1σ2...σp0p=min(m,n)
UΣVTU\Sigma V^TUΣVT 称为矩阵AAA的奇异值分解(singular value decomposition SVD,σi\sigma_iσi称为矩阵AAA的奇异值(singular value),UUU的列向量称为左奇异值,VVV的列向量称为右奇异值。

奇异值分解不要求矩阵AAA为方阵,奇异值分解可以看作是矩阵的对角化推广。
由于 AAA可能不是方阵,因此对角矩阵上元素的个数p=min(m,n)p=min(m,n)p=min(m,n)

举个例子。
给定一个 $5\times 4$的矩阵 $A$

A=[10000004030000002000]A=\begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 4\\ 0 & 3 & 0 & 0\\ 0 & 0 & 0 & 0\\ 2 & 0 & 0 & 0 \end{bmatrix}A= 100020<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值