使用anacond prompt安装pytorch(CPU版)

该教程介绍了如何通过Anaconda Prompt在Windows环境下创建虚拟环境并安装PyTorch的CPU版本。首先从官网下载并安装Anaconda,然后在Anaconda Prompt中创建一个名为'pytorch'的环境,指定Python版本为3.8。接着,切换到清华大学的镜像源以加速包的下载。最后,通过conda命令安装PyTorch、torchvision和torchaudio,并检查安装的包列表确认PyTorch是否成功安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用anacond prompt安装pytorch

GPU版本的教程请点击此处查看
·首先去anaconda官网安装anaconda,然后打开anaconda prompt(pycharm配置环境略过):
在命令行输入:

Conda create –n pytorch python=3.8

来创建一个关于pytorch的单独环境
这里的‘pytorch’是环境名称,python=3.8是版本,都可以根据需求自行修改
然后就可以进入我们创建好的虚拟环境:

activate pytorch

然后我们可以切换一下源:切换源能够更快的下载 包
配置清华源,在命令行输入:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

然后一切准备工作做好之后,接下来开始安装pytorch,在命令行输入:

conda install pytorch torchvision torchaudio cpuonly -c pytorch   

输入之后等待一会再输入‘y’(确认下载)
最后在命令行输入:

pip list

然后会列出这个环境所有的包,可以查看有没有‘torch’
休闲就
出现torch就代表成功了!
欢迎关注作者,有什么问题可以一起讨论!

<think>嗯,用户现在想要在Anaconda Prompt中配置PyTorchCPU本。首先,我需要理解用户的需求。他们可能正在学习深度学习,但暂没有GPU,或者只是想在本地先搭建一个环境进行测试和开发。用户可能之前遇到了NumPy的问题,现在解决了之后,想继续配置PyTorchCPU本。 用户之前的问题是关于NumPy初始化失败的警告,这可能与他们的环境配置有关,尤其是在Windows系统下。现在他们转向配置PyTorchCPU本,可能是因为他们需要GPU加速,或者他们的机器没有兼容的NVIDIA显卡。这候,正确安装CPU本的PyTorch可以避免依赖CUDA带来的复杂性,同也能减少安装包的大小和安装间。 首先,我需要确保用户了解如何正确创建和管理Conda环境。之前的对话中用户已经有一个名为pytorch_env的环境,但可能因为之前的问题,他们可能需要重建环境或者新建一个。这候,建议用户创建一个新的环境可以避免旧环境中的潜在冲突。 接下来,安装PyTorchCPU本。用户可能访问过PyTorch官网,但官网默认可能显示的是CUDA本的安装命令。因此,需要明确告诉用户如何选择CPU本的安装命令。例如,在PyTorch官网的安装选项中,选择OS、Conda、Python本以及CPU,生成的安装命令应该是这样的:`conda install pytorch torchvision torchaudio cpuonly -c pytorch`。这需要强调使用`cpuonly`包而是CUDA相关的选项。 此外,用户可能会遇到依赖冲突的问题,尤其是在已经存在其他科学计算库的环境中。这候,建议用户先创建一个干净的环境,然后安装PyTorch,这样可以避免与其他包的本冲突。例如,使用`conda create -n pytorch_cpu python=3.9`创建一个新环境,然后激活环境再安装PyTorch安装完成后,用户需要验证安装是否成功。可以通过简单的Python代码来测试PyTorch是否正确安装,并确认是否使用的是CPU本。例如,导入PyTorch后检查`torch.cuda.is_available()`是否为False,并打印出张量以确认运行正常。这一步对于确认安装正确性非常重要,用户可能会忽略,所以需要详细说明。 另外,考虑到用户之前遇到的NumPy问题,可能需要确保PyTorch安装过程中安装的NumPy本是兼容的。如果用户之前手动安装了NumPy,可能会存在本冲突,因此建议在安装PyTorch让Conda自动处理依赖关系,而是单独安装NumPy。 用户可能还会问及如何安装其他库,比如torchvision和torchaudio,这候需要说明这些库通常与PyTorch一起安装,但如果是CPU本,同样需要使用`cpuonly`选项。同,提醒用户如果后续需要安装其他包,应该在该环境中使用Conda或pip安装,以保持环境的一致性。 最后,用户可能需要了解如何管理多个环境,比如切换环境、列出环境、删除环境等基本命令,这些可以在回答中简要提及,帮助用户更好地管理他们的开发环境。 总结下来,用户需要的是一个清晰的步骤指南,从创建环境、安装PyTorch CPU本到验证安装,同避免常见的依赖问题和环境冲突。此外,强调使用官方渠道的安装命令,以确保依赖关系的正确性,避免第三方源可能带来的问题。</think>以下是在Anaconda Prompt中配置PyTorch CPU本的**完整指南**,包含环境创建、安装验证和常见问题解决方案: --- ### **步骤1:创建独立Conda环境(推荐)** ```bash # 创建名为pytorch_cpu的Python 3.9环境(本可选) conda create -n pytorch_cpu python=3.9 # 激活环境 conda activate pytorch_cpu ``` --- ### **步骤2:安装PyTorch CPU本** #### 通过Conda安装(官方推荐): ```bash conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` #### 通过pip安装(备用方案): ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu ``` --- ### **步骤3:验证安装** 在Python交互界面中运行: ```python import torch # 检查PyTorch本 print(torch.__version__) # 应输出如2.0.1 # 确认是CPU本 print(torch.cuda.is_available()) # 必须返回False # 创建测试张量 x = torch.rand(3, 3) print(x) # 应输出3x3随机矩阵 ``` --- ### **关键参数说明** | 参数/选项 | 作用 | |-----------------------|----------------------------------------------------------------------| | `cpuonly` | 指定安装CPU本的PyTorch(Conda专用参数) | | `-c pytorch` | 指定从PyTorch官方渠道安装 | | `--index-url` | 指定pip安装源为PyTorch官方CPU本仓库 | --- ### **常见问题解决** #### **1. 安装后仍显示CUDA相关警告** - **原因**:环境残留CUDA依赖或误装GPU- **解决**: ```bash # 彻底卸载后重装 pip uninstall torch torchvision torchaudio conda install pytorch torchvision torchaudio cpuonly -c pytorch --force-reinstall ``` #### **2. 安装速度慢/超** - **方案**: - 更换Conda镜像源: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes ``` -使用pip加速: ```bash pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple ``` #### **3. 依赖冲突(如numpy兼容)** - **解决**: ```bash # 让Conda自动解决依赖 conda update --all # 或手动指定numpy本 conda install numpy=1.23.5 ``` --- ### **环境管理命令** | 命令 | 功能 | |------------------------------|-------------------------| | `conda env list` | 列出所有环境 | | `conda remove -n env_name --all` | 删除指定环境 | | `conda list` | 查看当前环境安装的包 | --- ### **性能优化建议** 1. **启用MKL加速** 确保已安装Intel MKL库: ```bash conda install mkl=2023 ``` 2. **内存配置** 在代码中添加限制内存使用的配置: ```python torch.set_num_threads(4) # 根据CPU核心数调整 ``` --- 通过以上步骤,您将获得一个**纯净的PyTorch CPU开发环境**,适用于无GPU设备的机器学习实验和模型部署测试。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值