Python 数据分析与可视化 Day 8 - Pandas 高级操作技巧

✅ 今日目标

  • 掌握 Pandas 的索引体系(Index / MultiIndex)
  • 使用 set_index()reset_index() 管理数据索引
  • 理解 pivot_tablemeltstack/unstack 重塑数据形态
  • 初步理解“宽表”与“长表”在数据分析与可视化中的应用场景

📚 一、深入理解 Pandas 的索引系统

1. 默认索引 vs 自定义索引

df = pd.read_csv("./data/students_cleaned.csv")

# 自定义“姓名”为索引列
df_indexed = df.set_index("姓名")
print(df_indexed.head())

# 还原索引为普通列
df_reset = df_indexed.reset_index()

2. 多级索引(MultiIndex)

df_multi = df.set_index(["性别", "是否及格"])
print(df_multi.head())

# 多级索引选择
print(df_multi.loc[("男", True)])

📊 二、数据透视表(pivot_table)

类似 Excel 的数据透视功能,可做汇总/分组/聚合操作

# 性别 + 及格情况的平均成绩
pivot = pd.pivot_table(df, values="成绩", index="性别", columns="是否及格", aggfunc="mean")
print(pivot)

🔁 三、数据重塑:长表 ↔ 宽表

1. melt(宽表 → 长表)

df_melted = pd.melt(df, id_vars=["姓名", "性别"], value_vars=["成绩", "是否及格"])
print(df_melted.head())

2. pivot(长表 → 宽表)

# 从 melt 回 pivot
df_pivot = df_melted.pivot(index=["姓名", "性别"], columns="variable", values="value")
print(df_pivot.head())

3. stack & unstack

stacked = df.set_index(["姓名", "性别"]).stack()
print(stacked.head())

unstacked = stacked.unstack()
print(unstacked.head())

🧪 今日练习任务建议

  1. 使用 set_indexreset_index 操作学生数据

  2. 创建一个以“性别 + 是否及格”为索引的多级索引表

  3. 统计不同性别在及格与否下的平均成绩(pivot_table)

  4. 使用 melt 将成绩 & 是否及格转换为“指标名 + 值”形式

  5. 使用 stack/unstack 查看层级结构变化

    data/students_cleaned.csv如数如图:
    在这里插入图片描述

    代码示例:

    import pandas as pd
    import os
    
    # 数据路径
    input_path = "data/students_cleaned.csv"
    if not os.path.exists(input_path):
        raise FileNotFoundError("❌ 缺少 students_cleaned.csv,请先运行 clean_data.py")
    
    # 加载数据
    df = pd.read_csv(input_path)
    print("✅ 已加载数据:")
    print(df.head())
    
    # ========== 一、索引操作 ==========
    
    print("\n👉 使用 set_index() 将姓名设为索引:")
    df_indexed = df.set_index("姓名")
    print(df_indexed.head())
    
    print("\n🔁 使用 reset_index() 还原索引:")
    df_reset = df_indexed.reset_index()
    print(df_reset.head())
    
    # ========== 二、多级索引 ==========
    
    print("\n📦 设置多级索引(性别 + 是否及格):")
    df_multi = df.set_index(["性别", "是否及格"])
    print(df_multi.head())
    
    print("\n🔍 查询:性别为 '女' 且 及格 的学生:")
    print(df_multi.loc[("女", True)])
    
    # ========== 三、pivot_table 操作 ==========
    
    print("\n📊 pivot_table 统计性别 + 是否及格下的平均成绩:")
    pivot = pd.pivot_table(df, values="成绩", index="性别", columns="是否及格", aggfunc="mean")
    print(pivot)
    
    # ========== 四、melt 数据重塑 ==========
    
    print("\n🔄 使用 melt 变长表结构(指标列合并):")
    df_melted = pd.melt(df, id_vars=["姓名", "性别"], value_vars=["成绩", "是否及格"])
    print(df_melted.head())
    
    # ========== 五、pivot 还原宽表结构 ==========
    
    print("\n🔁 使用 pivot 将 melt 数据还原回宽表:")
    df_pivot = df_melted.pivot(index=["姓名", "性别"], columns="variable", values="value")
    print(df_pivot.head())
    
    # ========== 六、stack 和 unstack ==========
    
    print("\n📚 使用 stack 增加层级结构(列 → 行):")
    df_stacked = df.set_index(["姓名", "性别"]).stack()
    print(df_stacked.head())
    
    print("\n📂 使用 unstack 还原结构(行 → 列):")
    df_unstacked = df_stacked.unstack()
    print(df_unstacked.head())
    

    运行结果:

    ✅ 已加载数据:
       姓名 性别     成绩   是否及格
    0  张三  男  88.00   True
    1  李四  女  81.75   True
    2  王五  男  59.00  False
    3  田七  女  81.75   True
    4  赵六  女  92.00   True
    
    👉 使用 set_index() 将姓名设为索引:
       性别     成绩   是否及格
    姓名                 
    张三  男  88.00   True
    李四  女  81.75   True
    王五  男  59.00  False
    田七  女  81.75   True
    赵六  女  92.00   True
    
    🔁 使用 reset_index() 还原索引:
       姓名 性别     成绩   是否及格
    0  张三  男  88.00   True
    1  李四  女  81.75   True
    2  王五  男  59.00  False
    3  田七  女  81.75   True
    4  赵六  女  92.00   True
    
    📦 设置多级索引(性别 + 是否及格):
              姓名     成绩
    性别 是否及格            
    男  True   张三  88.00True   李四  81.75False  王五  59.00True   田七  81.75
       True   赵六  92.00
    
    🔍 查询:性别为 '女' 且 及格 的学生:
             姓名     成绩
    性别 是否及格           
    女  True  李四  81.75
       True  田七  81.75
       True  赵六  92.00
    
    📊 pivot_table 统计性别 + 是否及格下的平均成绩:
    是否及格  False      True 
    性别                    
    女       NaN  85.16666759.0  88.000000
    
    🔄 使用 melt 变长表结构(指标列合并):
       姓名 性别 variable  value
    0  张三  男       成绩   88.0
    1  李四  女       成绩  81.75
    2  王五  男       成绩   59.0
    3  田七  女       成绩  81.75
    4  赵六  女       成绩   92.0
    
    🔁 使用 pivot 将 melt 数据还原回宽表:
    variable     成绩 是否及格
    姓名 性别               
    张三 男       88.0  1.0
    李四 女      81.75  1.0
    王五 男       59.0  0.0
    田七 女      81.75  1.0
    赵六 女       92.0  1.0
    
    📚 使用 stack 增加层级结构(列 → 行):
    姓名  性别      
    张三  男   成绩       88.0
            是否及格     True
    李四  女   成绩      81.75
            是否及格     True
    王五  男   成绩       59.0
    dtype: object
    
    📂 使用 unstack 还原结构(行 → 列):
              成绩   是否及格
    姓名 性别              
    张三 男    88.0   True
    李四 女   81.75   True
    王五 男    59.0  False
    田七 女   81.75   True
    赵六 女    92.0   True
    

🧾 今日总结

  • 索引是 Pandas 操作效率与表达力的核心
  • 多级索引可构建灵活的数据结构,适合多维度聚合分析
  • pivot_table 是强大而高效的“表格重建”工具
  • melt / pivot / stack / unstack 是数据“变形”关键方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝婷儿

码字烧脑,求投喂鸡腿续命!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值