5G标准学习笔记08-基于AI/ML定位精度增强
前言
大家好,前面一起学习了NR定位的基本概念,现在Release 18 中不断推动AI通信发展,所以基于AI/ML定位精度增强这个case也受到了更多的关注,下面孬孬就带着大家一起来学习一下吧!如果大家觉得孬孬讲的还行,请大家不要吝啬对孬孬的关注呀!
应用场景
对于基于AI/ML定位精度增强的方法,当下的讨论主要包括两种,分别是基于AI/ML的直接定位方法和基于AI/ML辅助定位两大应用场景。
1.直接AI/ML定位:
定义
直接AI/ML定位:通过AI/ML模型直接从信道测量数据中推导出用户设备(UE)的最终位置,跳过传统定位算法的中间步骤。(通俗来讲就是输入是信道测量的数据,经过AI模型,输出是对应的UE的位置信息,相当于是个黑盒性质的)。
过程
具体可以如下图所示:
输入:信道测量数据(如RSSI、TOA、AOA)与关联的多个传输接收点(TRP)。
输出:AI/ML模型直接生成UE的地理坐标或位置信息。
过程:模型通过端到端学习,从原始数据中提取位置特征,无需传统算法的显式中间计算。
2.AI/ML辅助定位:
定义
AI/ML辅助定位利用AI/ML模型增强传统定位算法的中间步骤,最终位置由传统算法或混合方法计算。
过程
在标准中现在分为三种方式来进行:
(1)
输入:信道测量数据(Channel measurement)与关联的多个传输接收点(TRP 0, TRP 1, …, TRP N-1)。
输出:**AI/ML模型(注意这个是一个AI/ML 模型哦)**生成中间定位测量(Intermediate positioning measurement)(一般是我们上一文章提出的:距离、角度或信号特征)。
过程:信道测量数据从各个TRP输入到AI/ML模型。模型处理数据,提取中间定位测量(如距离、角度或信号特征)。这些中间结果随后输入传统定位算法(如三角测量)以计算最终UE位置。
(2)
输入:信道测量数据与关联的TRP 0, TRP 1, …, TRP N-1。
输出:多个AI/ML模型(注意这是多个同样的模型 model)分别生成中间定位测量(Intermediate positioning measurement)。
过程:每个TRP的信道测量数据输入到独立的AI/ML模型。每个模型输出对应的中间定位测量(如距离、角度或信号特征),反映特定TRP的定位信息。这些中间结果汇总后,输入传统定位算法或融合模块,计算最终位置。
(3)
输入:信道测量数据与关联的TRP 0, TRP 1, …, TRP N-1。
输出:多个AI/ML模型生成中间定位测量,并进一步输出中间定位结果(Intermediate positioning)。
过程:每个TRP的信道测量数据输入到对应的AI/ML模型(注意这是多个不同的模型 model)(AI/ML model 0, 1, …, N-1)。模型输出中间定位测量,并进一步处理为中间定位结果。中间定位结果可直接用于后续定位,或结合多源数据(如地图)进一步优化。
参考文献
https://www.txrjy.com/thread-1363673-1-1.html
总结
OK,今天的就介绍到这,感谢大家的关注和一键三连!