【算法】记忆化搜索

[!TIP]

一种剪枝算法,优化运算效率,减少冗余计算

基本内容

题目要求:输入n,输出一共可以构造多少个数列,要求数列的第 i不能超过第i-1个数的一半

示例:输入6,只能输出 [6], [6, 1], [6, 2], [6, 3], [6, 2, 1], [6, 3, 1] 一共六种

  • 传统思路,深度优先搜索算法,可以发现大部分案例都 TLE(超时)了
n = int(input())
ans = 0
def f(x):
    global ans
    ans += 1
    for i in range(1, int(x/2)+1):
        f(i)

f(n)
print(ans)

  • 超时分析:存在着重复计算的数列重复子问题,以输入8为例,当我们计算出[8, 2, 1]时就知道了当输入为2时只有俩个可以满足的序列,以此类推,当我们以32为输入,计算到[36, 16, 8 …] 得知子树8共有 10 种数列时,即可直接计算 [36, 8] 共有11种满足的数列。

  • 记忆化搜索:额外开辟一个数组空间 cache 存储计算过的值
n = int(input())
cache = [-1] * (n+1)
def f(x):
    if cache[x] != -1: # cache 不为-1表示已经计算过
        return cache[x]
    
    ans = 1 # 每一个数字都可以表示单独为一个数列
    for i in range(1, int(x/2)+1):
        ans += f(i)
    cache[x] = ans
    return ans

print(f(n))
题目
  1. Leetcode 638. 大礼包

本来想用贪心算法去做,行不通,还是需要遍历每一种情况

class Solution:
    def shoppingOffers(self, price: List[int], special: List[List[int]], needs: List[int]) -> int:
        cache = {}

        def dfs(needs: Tuple[int]) -> int:
            if needs in cache: # 若need被计算过则返回need所需的最小花费
                return cache[needs]
            
            min_cost = 0 # 不用礼包的低消
            for i in range(len(price)):
                min_cost += (needs[i] * price[i])
          
            for offer in special: # 因为礼包可以无限次使用,每次都需要遍历每一个礼包
                new_needs = []
                for i in range(len(needs)):
                    if needs[i] < offer[i]:  # 如果大礼包的物品超出需求,跳过
                        break
                    new_needs.append(needs[i] - offer[i])
                else: # 表示for循环没有被break,计算当前使用该礼包是否可以得到最小值
                    min_cost = min(min_cost, dfs(tuple(new_needs)) + offer[-1])
                    
            cache[needs] = min_cost
            return min_cost
        
        return dfs(tuple(needs))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值