这篇文章的模型是在广告推荐的背景下实现的。
- 预测任务:预测用户在给定查询中点击广告的可能性
一、研究动机
此前的特征交互是基于人工操作的,面对现如今大规模的特征很难再去人工生成大规模的交互特征。因此,这篇文章提出了Deep Crossing model
,是将稠密和稀疏数据作为输入,自动交互特征的模型。
[!note]
作者提出了交叉特征的优越性,在kaggle比赛中最好的模型通常是融合了3-5个特征。
二、模型
- 模型架构主要包括了:
Embedding
,Stackding
,Residual Unit
,Scoring Layer
- 损失函数:交叉熵损失
y=−1N∑i=1N(yilog(pi)+(1−yi)log(1−pi)) y=-\frac{1}{N}\sum_{i=1}^N (y_i\log(p_i)+(1-y_i)\log(1-p_i)) y=−N1i=1∑N(yilog(pi)+(1−yi