【推荐算法】单目标精排模型——Deep Crossing

这篇文章的模型是在广告推荐的背景下实现的。

  • 预测任务:预测用户在给定查询中点击广告的可能性

一、研究动机

​ 此前的特征交互是基于人工操作的,面对现如今大规模的特征很难再去人工生成大规模的交互特征。因此,这篇文章提出了Deep Crossing model,是将稠密和稀疏数据作为输入,自动交互特征的模型。

[!note]

作者提出了交叉特征的优越性,在kaggle比赛中最好的模型通常是融合了3-5个特征。

二、模型

  • 模型架构主要包括了:Embedding, Stackding, Residual Unit, Scoring Layer

image

  • 损失函数:交叉熵损失

y=−1N∑i=1N(yilog⁡(pi)+(1−yi)log⁡(1−pi)) y=-\frac{1}{N}\sum_{i=1}^N (y_i\log(p_i)+(1-y_i)\log(1-p_i)) y=N1i=1N(yilog(pi)+(1yi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值