自然语言处理(NLP)中的知识图谱构建实战
关键词:知识图谱、实体识别、关系抽取、图数据库、BERT模型、语义理解、知识推理
摘要:本文通过一个电影推荐系统的构建案例,详细讲解如何利用NLP技术从非结构化文本中抽取结构化知识,构建可推理的知识图谱。涵盖从文本预处理到图存储的完整流程,重点解析实体消歧、关系分类等核心挑战的解决方案。
背景介绍
目的和范围
本文旨在通过具体代码实例,演示如何将自然语言文本转化为结构化知识网络。涵盖信息抽取、知识融合、图存储三大核心环节,适用于智能问答、推荐系统等应用场景。
预期读者
具备Python基础及机器学习概念的开发者,希望了解知识图谱构建完整流程的技术人员。