自然语言处理(NLP)中的知识图谱构建实战

自然语言处理(NLP)中的知识图谱构建实战

关键词:知识图谱、实体识别、关系抽取、图数据库、BERT模型、语义理解、知识推理
摘要:本文通过一个电影推荐系统的构建案例,详细讲解如何利用NLP技术从非结构化文本中抽取结构化知识,构建可推理的知识图谱。涵盖从文本预处理到图存储的完整流程,重点解析实体消歧、关系分类等核心挑战的解决方案。

背景介绍

目的和范围

本文旨在通过具体代码实例,演示如何将自然语言文本转化为结构化知识网络。涵盖信息抽取、知识融合、图存储三大核心环节,适用于智能问答、推荐系统等应用场景。

预期读者

具备Python基础及机器学习概念的开发者,希望了解知识图谱构建完整流程的技术人员。

文档结构概述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值