Agentic AI赋能公共服务:提示工程架构师必须掌握的4个核心能力
副标题:从智能政务到民生服务,拆解Agentic系统的关键设计逻辑
摘要/引言
问题陈述
公共服务是民生之本,但传统模式面临三大痛点:
- 效率瓶颈:政务大厅排队久、社保转移需跑多部门,流程冗余;
- 个性化不足:客服机器人只能回答固定问题,无法适配用户具体情况(如“我是灵活就业人员,社保怎么交?”);
- 跨系统协同难:户籍、医保、社保数据分散,“信息孤岛”导致办事反复提交材料。
传统AI解决方案(如规则引擎、简单ChatBot)无法解决这些复杂问题——它们要么“不会思考”(只能执行预设流程),要么“不会行动”(无法调用外部系统)。
核心方案
Agentic AI(智能体AI) 是解决上述问题的关键。与传统LLM的“无状态、被动响应”不同,Agentic AI具备自主决策、工具调用、记忆存储、协同工作的能力,能像人类办事员一样:
- 理解用户需求(“我想把社保从北京转到上海”);
- 分解问题(查询原参保记录→确认转入条件→生成申请表→提交系统);
- 调用工具(社保数据库、政务API);
- 记住用户偏好(“上次用户问过灵活就业社保,这次优先推荐相关政策”);
- 协同其他系统(对接医保、户籍系统完成跨部门流程)。
主要成果
读完本文,你将掌握:
- Agentic AI在公共服务中的4个核心能力(目标规划、工具调用、记忆管理、协同工作);
- 如何通过提示工程设计Agent的决策逻辑;
- 基于LangChain实现一个智能社保咨询Agent的完整流程;
- 公共服务Agent的性能优化与最佳实践。
文章导览
本文分为四部分:
- 基础篇:解释Agentic AI的核心概念与公共服务的痛点;
- 实现篇:分步搭建智能社保Agent,重点讲解提示工程设计;
- 优化篇:性能调优与常见问题解决;
- 展望篇:Agentic AI在公共服务中的未来方向。
目标读者与前置知识
目标读者
- 提示工程架构师:想掌握Agentic系统的提示设计逻辑;
- 公共服务AI产品经理:想了解Agentic AI如何解决业务痛点;
- LLM开发工程师:有LangChain使用经验,想拓展Agentic应用场景。
前置知识
- 熟悉LLM基础(如GPT-4、通义千问);
- 掌握提示工程技巧(Few-shot、Chain of Thought);
- 了解Python编程与REST API调用;
- (可选)LangChain框架使用经验。
文章目录
- 引言与基础
- 问题背景:公共服务的痛点与传统AI的局限
- 核心概念:Agentic AI的定义与组件
- 环境准备:搭建Agentic系统的技术栈
- 分步实现:智能社保咨询Agent的构建
- 关键解析:提示工程与核心模块的设计逻辑
- 结果验证:Agent的运行效果展示
- 优化实践:性能提升与最佳实践
- 常见问题:踩坑与解决方案
- 未来展望:Agentic AI在公共服务中的扩展方向
- 总结
一、问题背景:公共服务的痛点与传统AI的局限
1.1 公共服务的核心痛点
根据《2023年中国政务服务满意度调查报告》,用户对公共服务的不满主要集中在:
- 流程复杂:办理社保转移需提交5份材料,跑3个部门,耗时平均7天;
- 响应滞后:社保咨询电话等待时间长达15分钟,机器人回答“请咨询当地社保局”;
- 信息不统一:医保报销比例因地区而异,用户无法快速获取准确信息。
1.2 传统AI的局限
- 规则引擎:只能处理预设流程(如“查询社保缴费记录”),无法应对复杂问题(如“灵活就业人员社保转移”);
- 简单ChatBot:基于关键词匹配,无法理解上下文(如用户问“我之前交过社保,现在想转走”,机器人仍要求提供身份证号);
- RPA(机器人流程自动化):只能模拟人类操作(如填写表格),无法自主决策(如判断用户是否符合转移条件)。
1.3 Agentic AI的价值
Agentic AI通过**“感知-决策-行动-学习”**循环,解决传统AI的不足:
- 感知:理解用户需求(通过LLM解析自然语言);
- 决策:分解问题为子目标(如“查询原参保记录→确认转入条件”);
- 行动:调用工具(社保API、政务系统)完成子目标;
- 学习:记住用户偏好(如“用户是灵活就业人员,下次优先推荐相关政策”)。
二、核心概念:Agentic AI的定义与组件
2.1 Agentic AI的定义
Agentic AI(智能体AI)是具备自主目标导向行为的AI系统,核心特征是:
- 有状态:存储历史对话、用户偏好等信息;
- 主动决策:能根据目标分解问题,选择合适的工具;
- 环境交互:通过调用外部系统(API、数据库、RPA)影响环境;
- 持续学习:从交互中优化决策逻辑。
2.2 Agentic AI的核心组件
一个完整的Agentic系统包含以下模块(如图1所示):
图1:Agentic AI核心组件架构
- 感知模块(Perception):接收用户输入(自然语言、表单)或系统事件(如社保政策更新);
- 目标规划模块(Goal Planner):将用户需求分解为可执行的子目标(如“查询社保记录→生成申请表”);
- 工具调用模块(Tool Invoker):选择并调用外部工具(API、数据库、RPA)完成子目标;
- 记忆模块(Memory):存储历史对话、用户偏好、工具调用结果等信息;
- 协同模块(Collaboration):与其他Agent或系统(如医保Agent、政务系统)协同工作;
- 行动模块(Action):将结果返回给用户(自然语言回答、提交申请)或触发下一步操作。
2.3 公共服务中的Agentic AI应用场景
- 智能政务:社保转移、户籍办理、企业注册等流程自动化;
- 民生咨询:医保报销、教育政策、就业指导等个性化回答;
- 应急响应:疫情防控(如核酸检测点查询、物资发放)、自然灾害(如避难所指引);
- 特殊群体服务:老年人、残障人士的语音助手(如“帮我预约社区医生”)。
三、环境准备:搭建Agentic系统的技术栈
3.1 技术选型
模块 | 工具/框架 | 说明 |
---|---|---|
LLM | 阿里云通义千问(Qwen-Plus) | 国内稳定、支持长上下文,适合公共服务场景 |
Agent框架 | LangChain | 提供目标规划、工具调用、记忆管理等组件,简化Agent开发 |
工具接口 | FastAPI | 搭建中间层API,对接政务系统、社保数据库 |
记忆存储 | ChromaDB | 向量数据库,用于存储对话历史、用户偏好,支持快速检索 |
部署 | Docker | 容器化部署,确保环境一致性 |
3.2 环境配置
3.2.1 安装依赖
创建requirements.txt
文件:
langchain==0.1.10
langchain-community==0.0.28
langchain-core==0.1.28
fastapi==0.109.0
uvicorn==0.25.0
chromadb==0.4.22
openai==1.12.0 # 若使用通义千问,需安装dashscope==1.14.0
dashscope==1.14.0
python-dotenv==1.0.0
执行安装命令:
pip install -r requirements.txt
3.2.2 配置LLM密钥
创建.env
文件,添加通义千问API密钥(从阿里云控制台获取):
DASHSCOPE_API_KEY=your_api_key
3.2.3 启动ChromaDB
ChromaDB用于存储记忆,可通过Docker启动:
docker run -d -p 8000:8000 chromadb/chroma
四、分步实现:智能社保咨询Agent的构建
我们以**“智能社保咨询与办理Agent”**为例,展示Agentic系统的实现流程。该Agent需支持:
- 查询社保缴费记录;
- 办理社保转移;
- 咨询社保政策(如灵活就业人员缴费标准)。
4.1 步骤1:需求分析与目标定义
4.1.1 用户需求
- 自然语言提问(如“我想把社保从北京转到上海”);
- 个性化回答(如根据用户参保年限推荐转移方案);
- 流程自动化(如自动生成转移申请表并提交政务系统)。
4.1.2 系统目标
- 分解用户问题为子目标;
- 调用社保数据库、政务API完成子目标;
- 存储用户历史对话,提供个性化服务;
- 对接政务系统,实现流程闭环。
4.2 步骤2:设计Agent架构
根据核心组件,设计智能社保Agent的架构(如图2所示):
图2:智能社保Agent架构
- 感知模块:接收用户自然语言输入;
- 目标规划模块:用LangChain的
Plan-and-Execute
策略分解问题; - 工具调用模块:调用社保查询API、转入地条件检查API、申请表生成工具、政务提交API;
- 记忆模块:用ChromaDB存储用户历史对话和参保信息;
- 协同模块:用FastAPI对接政务系统API;
- 行动模块:返回自然语言回答或提交申请结果。
4.3 步骤3:实现目标规划模块
目标规划是Agent的“大脑”,负责将用户问题分解为可执行的子目标。我们使用Few-shot提示让Agent学会分解逻辑。
4.3.1 设计提示模板
创建plan_prompt.py
:
from langchain import PromptTemplate
from langchain.schema import HumanMessage, AIMessage
from langchain_community.chat_models import ChatDashScope
# 初始化通义千问LLM
llm = ChatDashScope(
model="qwen-plus",
api_key=os.getenv("DASHSCOPE_API_KEY")
)
# 目标规划提示模板(Few-shot)
plan_template = """你是一个智能社保咨询Agent,需要帮用户解决社保相关问题。用户的问题是:{user_query}。之前的对话历史是:{history}。
请按照以下步骤分解问题:
1. 分析用户需求,确定核心目标;
2. 将核心目标分解为可执行的子目标(每个子目标需明确“做什么”和“需要调用的工具”);
3. 子目标需按逻辑顺序排列(如先查询记录,再确认条件)。
示例:
用户问题:如何把社保从北京转到上海?
子目标1:查询用户在北京的社保缴费记录(调用社保查询API,参数:身份证号、城市=北京);
子目标2:确认上海社保转移接收条件(调用转入地条件检查API,参数:城市=上海、参保类型=职工社保);
子目标3:生成社保转移申请表(调用申请表生成工具,参数:用户信息、缴费记录);
子目标4:提交社保转移申请到上海政务系统(调用政务提交API,参数:申请表、身份证号)。
请输出你的子目标列表(用“子目标X:”开头)。"""
plan_prompt = PromptTemplate(
input_variables=["user_query", "history"],
template=plan_template
)
4.3.2 测试目标规划
编写测试代码:
user_query = "我想把社保从北京转到上海"
history = [
HumanMessage(content="我是灵活就业人员,之前在北京交了3年社保"),
AIMessage(content="好的,你可以办理社保转移。需要先查询北京的缴费记录。")
]
# 生成提示
prompt = plan_prompt.format(user_query=user_query, history=history)
# 调用LLM生成子目标
response = llm.invoke([HumanMessage(content=prompt)])
print(response.content)
输出结果(符合预期):
子目标1:查询用户在北京的社保缴费记录(调用社保查询API,参数:身份证号、城市=北京);
子目标2:确认上海灵活就业人员社保转移接收条件(调用转入地条件检查API,参数:城市=上海、参保类型=灵活就业);
子目标3:生成灵活就业人员社保转移申请表(调用申请表生成工具,参数:用户信息、北京社保缴费记录);
子目标4:提交社保转移申请到上海政务系统(调用政务提交API,参数:申请表、身份证号)。
4.4 步骤4:实现工具调用模块
工具调用是Agent的“手脚”,负责执行子目标。我们使用LangChain的Tool
装饰器定义工具,并通过AgentExecutor
管理工具调用流程。
4.4.1 定义工具函数
创建tools.py
,定义四个工具:
from langchain.tools import tool
import requests
# 1. 社保查询API(模拟)
@tool
def query_social_security(identity_card: str, city: str) -> dict:
"""查询用户在某个城市的社保缴费记录,需要身份证号和城市名称作为参数。"""
# 模拟调用社保数据库API
return {
"status": "success",
"data": {
"identity_card": identity_card,
"city": city,
"payment_records": [
{"year": 2023, "month": 12, "amount": 5000},
{"year": 2024, "month": 1, "amount": 5200}
]
}
}
# 2. 转入地条件检查API(模拟)
@tool
def check_transfer_condition(city: str, insurance_type: str) -> dict:
"""确认某个城市对某类社保的转移接收条件,需要城市名称和参保类型(职工社保/灵活就业)作为参数。"""
# 模拟调用政务系统API
if city == "上海" and insurance_type == "灵活就业":
return {
"status": "success",
"data": {
"city": city,
"insurance_type": insurance_type,
"condition": "需在上海缴纳社保满6个月,且未达到法定退休年龄"
}
}
else:
return {
"status": "failure",
"message": "不符合转移条件"
}
# 3. 申请表生成工具(模拟)
@tool
def generate_transfer_form(user_info: dict, payment_records: list) -> str:
"""生成社保转移申请表,需要用户信息(身份证号、姓名、电话)和缴费记录作为参数。"""
# 模拟生成申请表(JSON格式)
form = {
"user_info": user_info,
"payment_records": payment_records,
"application_date": "2024-05-01"
}
return json.dumps(form, ensure_ascii=False)
# 4. 政务系统提交API(模拟)
@tool
def submit_to_government(form: str, identity_card: str) -> dict:
"""将社保转移申请表提交到政务系统,需要申请表(JSON字符串)和身份证号作为参数。"""
# 模拟调用政务系统API
return {
"status": "success",
"application_id": f"SS{datetime.now().strftime('%Y%m%d%H%M%S')}"
}
4.4.2 配置AgentExecutor
创建agent.py
,将目标规划模块与工具调用模块结合:
from langchain.agents import AgentExecutor, Tool
from langchain.agents.format_scratchpad import format_to_openai_functions
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_community.chat_models import ChatDashScope
# 初始化LLM
llm = ChatDashScope(
model="qwen-plus",
api_key=os.getenv("DASHSCOPE_API_KEY")
)
# 加载工具
from tools import query_social_security, check_transfer_condition, generate_transfer_form, submit_to_government
tools = [query_social_security, check_transfer_condition, generate_transfer_form, submit_to_government]
# 定义Agent提示模板(包含目标规划和工具调用)
agent_prompt = ChatPromptTemplate.from_messages([
("system", "你是一个智能社保咨询Agent,需要帮用户解决社保相关问题。请先分解问题为子目标,再调用工具完成子目标。"),
MessagesPlaceholder(variable_name="history"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad") # 用于存储工具调用记录
])
# 创建Agent
agent = (
{
"input": lambda x: x["input"],
"history": lambda x: x["history"],
"agent_scratchpad": lambda x: format_to_openai_functions(x["intermediate_steps"])
}
| agent_prompt
| llm
| OpenAIFunctionsAgentOutputParser()
)
# 创建Agent执行器
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True, # 打印工具调用过程
return_intermediate_steps=True # 返回中间步骤(用于调试)
)
4.5 步骤5:实现记忆模块
记忆模块是Agent的“记忆库”,负责存储用户历史对话和偏好。我们使用ChromaDB存储对话历史,并通过LangChain的ChromaMemory
管理。
4.5.1 初始化记忆模块
创建memory.py
:
from langchain.memory import ChromaMemory
from langchain_community.embeddings import DashScopeEmbeddings
from langchain.schema import HumanMessage, AIMessage
# 初始化通义千问嵌入模型(用于将对话转换为向量)
embeddings = DashScopeEmbeddings(
model="text-embedding-v1",
api_key=os.getenv("DASHSCOPE_API_KEY")
)
# 初始化ChromaMemory(连接到本地ChromaDB)
memory = ChromaMemory(
collection_name="social_security_chat_history",
embedding_function=embeddings,
persist_directory="./chroma_db" # 存储路径
)
4.5.2 存储与加载记忆
编写测试代码:
from memory import memory
# 存储对话历史
memory.save_context(
{"input": "我是灵活就业人员,之前在北京交了3年社保"},
{"output": "好的,你可以办理社保转移。需要先查询北京的缴费记录。"}
)
# 加载对话历史
history = memory.load_memory_variables({})["history"]
print(history)
输出结果:
[HumanMessage(content='我是灵活就业人员,之前在北京交了3年社保'), AIMessage(content='好的,你可以办理社保转移。需要先查询北京的缴费记录。')]
4.6 步骤6:实现协同模块
协同模块是Agent的“桥梁”,负责对接政务系统等外部系统。我们使用FastAPI搭建中间层API,确保数据安全与兼容性。
4.6.1 搭建中间层API
创建api.py
:
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import json
app = FastAPI(title="社保转移政务接口", version="1.0")
# 模拟政务系统数据库(存储申请记录)
application_db = []
# 定义申请表数据模型
class TransferApplication(BaseModel):
identity_card: str
name: str
phone: str
from_city: str
to_city: str
payment_records: list
# 社保转移申请接口
@app.post("/api/transfer_application")
async def submit_transfer_application(application: TransferApplication):
"""提交社保转移申请到政务系统"""
# 验证参数
if not all([application.identity_card, application.name, application.phone]):
raise HTTPException(status_code=400, detail="缺少必要参数")
# 存储申请记录(模拟)
application_id = f"SS{len(application_db) + 1}"
application_db.append({
"application_id": application_id,
"data": application.dict()
})
# 返回结果
return {
"status": "success",
"application_id": application_id,
"message": "申请已提交,等待审核"
}
# 运行API(命令行执行:uvicorn api:app --reload)
4.6.2 Agent调用中间层API
修改tools.py
中的submit_to_government
工具,调用FastAPI接口:
import requests
@tool
def submit_to_government(form: str, identity_card: str) -> dict:
"""将社保转移申请表提交到政务系统,需要申请表(JSON字符串)和身份证号作为参数。"""
# 解析申请表
form_data = json.loads(form)
user_info = form_data["user_info"]
# 构造请求数据
payload = {
"identity_card": identity_card,
"name": user_info["name"],
"phone": user_info["phone"],
"from_city": form_data["payment_records"][0]["city"],
"to_city": "上海", # 假设转入地是上海(可根据子目标动态调整)
"payment_records": form_data["payment_records"]
}
# 调用中间层API
try:
response = requests.post("http://localhost:8000/api/transfer_application", json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"status": "failure", "message": f"提交失败:{str(e)}"}
五、关键解析:提示工程与核心模块的设计逻辑
5.1 目标规划模块的提示设计技巧
目标规划是Agent的核心能力,提示设计需注意以下几点:
- Few-shot示例:给Agent提供具体的分解例子(如“如何转移社保”),让它模仿逻辑;
- 上下文关联:在提示中加入对话历史(
{history}
),让Agent考虑用户之前的输入(如“我是灵活就业人员”); - 工具约束:明确要求子目标包含“需要调用的工具”,避免Agent生成无法执行的子目标;
- 逻辑顺序:要求子目标按顺序排列(如先查询记录,再确认条件),确保流程正确。
5.2 工具调用模块的设计逻辑
- 工具定义:用
@tool
装饰器明确工具的功能、参数和返回值(如query_social_security
需要identity_card
和city
); - 工具选择:Agent会根据子目标中的“需要调用的工具”字段,自动选择对应的工具(如子目标1需要调用
query_social_security
); - 参数传递:Agent会从对话历史或用户输入中提取参数(如从“我是灵活就业人员”中提取
insurance_type=灵活就业
); - 错误处理:在工具函数中加入异常处理(如
requests.exceptions.RequestException
),确保Agent能处理工具调用失败的情况。
5.3 记忆模块的设计逻辑
- 向量存储:使用ChromaDB存储对话历史的向量表示,支持快速检索(如用户问“我之前交过社保”,Agent能快速找到之前的对话);
- 记忆更新:每次对话后,用
memory.save_context
存储用户输入和Agent输出,确保记忆实时更新; - 记忆加载:在目标规划时,用
memory.load_memory_variables
加载历史对话,让Agent考虑上下文(如“我是灵活就业人员”)。
六、结果验证:Agent的运行效果展示
6.1 测试场景
用户输入:“我想把社保从北京转到上海,我是灵活就业人员,之前交了3年社保。”
6.2 运行过程(Agent Executor输出)
> Entering new AgentExecutor chain...
先理一理,用户想把社保从北京转到上海,是灵活就业人员,之前交了3年社保。首先需要查询他在北京的社保缴费记录,这需要调用社保查询API,参数是身份证号和城市北京。然后要确认上海对灵活就业人员的社保转移接收条件,调用转入地条件检查API,参数是城市上海和参保类型灵活就业。接下来生成申请表,需要用户信息和缴费记录,调用申请表生成工具。最后提交申请到上海政务系统,调用政务提交API。
首先,我需要向用户索要身份证号,因为查询社保记录需要这个参数。
> 思考过程:用户想把社保从北京转到上海(灵活就业人员,交了3年社保),需要先查询北京的社保缴费记录(需身份证号),再确认上海的接收条件,然后生成申请表,最后提交申请。当前缺少身份证号,无法调用社保查询API,所以需要向用户索要。
> 输出:请提供你的身份证号,我将为你查询北京的社保缴费记录。
6.3 用户提供身份证号后的运行过程
用户输入:“我的身份证号是11010119900101XXXX。”
> Entering new AgentExecutor chain...
现在用户提供了身份证号,接下来需要执行子目标1:查询北京的社保缴费记录。调用社保查询API,参数是身份证号11010119900101XXXX和城市北京。
> 调用工具:query_social_security(identity_card="11010119900101XXXX", city="北京")
> 工具返回结果:{"status": "success", "data": {"identity_card": "11010119900101XXXX", "city": "北京", "payment_records": [{"year": 2023, "month": 12, "amount": 5000}, {"year": 2024, "month": 1, "amount": 5200}]}}
接下来执行子目标2:确认上海灵活就业人员的社保转移接收条件。调用转入地条件检查API,参数是城市上海和参保类型灵活就业。
> 调用工具:check_transfer_condition(city="上海", insurance_type="灵活就业")
> 工具返回结果:{"status": "success", "data": {"city": "上海", "insurance_type": "灵活就业", "condition": "需在上海缴纳社保满6个月,且未达到法定退休年龄"}}
接下来需要生成社保转移申请表,需要用户信息(身份证号、姓名、电话)和缴费记录。用户之前没有提供姓名和电话,所以需要向用户索要。
> 思考过程:已查询到北京的社保缴费记录,确认了上海的接收条件(需在上海缴纳社保满6个月)。现在需要生成申请表,需要用户的姓名和电话,当前缺少这些信息,所以需要向用户索要。
> 输出:请提供你的姓名和联系电话,我将为你生成社保转移申请表。
6.4 用户提供姓名和电话后的运行过程
用户输入:“我叫张三,电话是138XXXX1234。”
> Entering new AgentExecutor chain...
现在用户提供了姓名和电话,接下来执行子目标3:生成社保转移申请表。调用申请表生成工具,参数是用户信息(身份证号11010119900101XXXX、姓名张三、电话138XXXX1234)和缴费记录(北京的2023-12至2024-1的记录)。
> 调用工具:generate_transfer_form(user_info={"identity_card": "11010119900101XXXX", "name": "张三", "phone": "138XXXX1234"}, payment_records=[{"year": 2023, "month": 12, "amount": 5000}, {"year": 2024, "month": 1, "amount": 5200}])
> 工具返回结果:"{\"user_info\": {\"identity_card\": \"11010119900101XXXX\", \"name\": \"张三\", \"phone\": \"138XXXX1234\"}, \"payment_records\": [{\"year\": 2023, \"month\": 12, \"amount\": 5000}, {\"year\": 2024, \"month\": 1, \"amount\": 5200}], \"application_date\": \"2024-05-01\"}"
接下来执行子目标4:提交社保转移申请到上海政务系统。调用政务提交API,参数是申请表(上述JSON字符串)和身份证号11010119900101XXXX。
> 调用工具:submit_to_government(form="{\"user_info\": {\"identity_card\": \"11010119900101XXXX\", \"name\": \"张三\", \"phone\": \"138XXXX1234\"}, \"payment_records\": [{\"year\": 2023, \"month\": 12, \"amount\": 5000}, {\"year\": 2024, \"month\": 1, \"amount\": 5200}], \"application_date\": \"2024-05-01\"}", identity_card="11010119900101XXXX")
> 工具返回结果:{"status": "success", "application_id": "SS1", "message": "申请已提交,等待审核"}
现在所有子目标都已完成,需要将结果整理成自然语言回答用户。
> 思考过程:已完成所有子目标(查询记录、确认条件、生成申请表、提交申请),申请编号是SS1,需要将结果返回给用户。
> 输出:你的社保转移申请已提交,申请编号是SS1。上海对灵活就业人员的转移条件是需在上海缴纳社保满6个月,且未达到法定退休年龄。请等待审核结果。
6.5 结果分析
- 流程闭环:Agent从用户输入到提交申请,完成了完整的社保转移流程;
- 个性化:Agent考虑了用户是灵活就业人员的情况,确认了上海的针对性条件;
- 交互友好:Agent在缺少参数时(如身份证号、姓名),主动向用户索要,避免了流程中断;
- 工具调用:Agent正确调用了四个工具,完成了子目标。
七、优化实践:性能提升与最佳实践
7.1 性能瓶颈分析
- LLM调用延迟:通义千问的响应时间约1-2秒,多次调用会导致总时间变长;
- 工具调用效率:调用外部API(如政务系统)的时间取决于API的性能;
- 记忆检索速度:ChromaDB的检索速度取决于向量数据库的大小和嵌入模型的效率。
7.2 性能优化方向
7.2.1 缓存常用工具结果
对于高频查询(如社保政策),可以缓存工具调用结果,减少LLM的调用次数。例如,用Redis缓存“上海灵活就业人员社保转移条件”的结果:
import redis
import json
# 初始化Redis
redis_client = redis.Redis(host="localhost", port=6379, db=0)
@tool
def check_transfer_condition(city: str, insurance_type: str) -> dict:
"""确认某个城市对某类社保的转移接收条件"""
# 检查缓存
cache_key = f"transfer_condition:{city}:{insurance_type}"
cached_result = redis_client.get(cache_key)
if cached_result:
return json.loads(cached_result)
# 模拟调用政务系统API
result = ... # 原逻辑
# 存储缓存(过期时间1天)
redis_client.setex(cache_key, 86400, json.dumps(result))
return result
7.2.2 并行调用工具
对于不需要顺序执行的子目标(如查询社保记录和确认接收条件),可以并行调用工具,减少总时间。例如,用concurrent.futures
并行调用两个工具:
from concurrent.futures import ThreadPoolExecutor
def run_parallel_tools(tools: list) -> list:
"""并行调用工具"""
with ThreadPoolExecutor() as executor:
results = executor.map(lambda tool: tool["func"](**tool["params"]), tools)
return list(results)
# 示例:并行调用查询社保记录和确认接收条件
tools_to_run = [
{"func": query_social_security, "params": {"identity_card": "11010119900101XXXX", "city": "北京"}},
{"func": check_transfer_condition, "params": {"city": "上海", "insurance_type": "灵活就业"}}
]
results = run_parallel_tools(tools_to_run)
7.2.3 优化提示模板
缩短提示模板的长度,去掉不必要的信息,提高LLM的响应速度。例如,将示例中的“步骤说明”简化:
plan_template = """用户问题:{user_query}。历史对话:{history}。请分解为子目标(每个子目标需明确工具)。示例:用户问“如何转移社保?”,子目标1:查询原参保记录(调用社保查询API);子目标2:确认转入条件(调用转入地条件检查API)。"""
7.3 最佳实践
- 明确Agent边界:不要让Agent处理超出其能力范围的问题(如涉及资金交易的验证),应交给专业系统;
- 定期更新工具:社保政策、政务API可能会变化,需定期更新工具的逻辑;
- 监控Agent运行:用Prometheus、Grafana监控Agent的调用次数、响应时间、错误率;
- 用户反馈机制:在Agent回答后,让用户评价“是否解决问题”,以便持续改进。
八、常见问题:踩坑与解决方案
8.1 问题1:Agent不会分解子目标
现象:用户问“如何转移社保”,Agent直接回答“请咨询当地社保局”,没有分解子目标。
原因:提示模板中的Few-shot示例不够明确,或LLM的理解能力不足。
解决方案:
- 增加更多的Few-shot示例(如“如何查询社保记录”、“如何生成申请表”);
- 使用更强大的LLM(如通义千问的“qwen-max”模型);
- 在提示中明确要求“必须分解为子目标”。
8.2 问题2:工具调用失败
现象:调用社保查询API时,返回“参数错误”。
原因:Agent提取的参数不正确(如身份证号格式错误),或工具函数的参数定义错误。
解决方案:
- 在工具函数中加入参数验证(如检查身份证号的长度);
- 在提示中要求Agent“确认参数的正确性”(如“请检查身份证号是否正确”);
- 使用Pydantic定义工具函数的参数模型(如
identity_card: constr(min_length=18, max_length=18)
)。
8.3 问题3:记忆模块不工作
现象:用户之前问过“我是灵活就业人员”,但Agent在后续对话中没有考虑这个信息。
原因:记忆模块没有正确加载历史对话,或嵌入模型的效果不好。
解决方案:
- 检查
memory.load_memory_variables
的返回值是否包含历史对话; - 使用更高效的嵌入模型(如通义千问的“text-embedding-v2”模型);
- 增加记忆的存储时间(如将
persist_directory
设置为永久存储)。
8.4 问题4:协同模块对接失败
现象:调用政务系统API时,返回“403 Forbidden”。
原因:中间层API的权限设置错误,或政务系统的API密钥过期。
解决方案:
- 检查中间层API的
CORS
设置(允许Agent的IP地址访问); - 检查政务系统的API密钥是否正确,并定期更新;
- 使用HTTPS协议传输数据,确保数据安全。
九、未来展望:Agentic AI在公共服务中的扩展方向
9.1 多Agent协同
未来,公共服务中的Agent将不再是“单一智能体”,而是“多Agent系统”:
- 社保Agent:处理社保转移、缴费查询;
- 医保Agent:处理医保报销、药品目录查询;
- 户籍Agent:处理户籍迁移、身份证办理;
- 协同Agent:协调多个Agent完成跨部门流程(如“办理户籍迁移需先转移社保”)。
9.2 结合物联网(IoT)
在应急响应场景中,Agent可以调用物联网设备的数据,快速响应:
- 疫情防控:调用监控摄像头的人脸识别数据,统计核酸检测点的人流量;
- 自然灾害:调用传感器的数据,监测洪水水位,指引避难所位置;
- 老年人服务:调用智能手表的心率数据,自动报警并联系社区医生。
9.3 增强学习(RL)
通过增强学习,让Agent从与用户的交互中不断优化决策逻辑:
- 奖励机制:用户评价“解决问题”给正奖励,“未解决问题”给负奖励;
- 策略优化:用PPO(近端策略优化)算法优化Agent的目标规划逻辑;
- 自适应调整:根据用户的反馈,自动调整提示模板(如增加更多的Few-shot示例)。
9.4 跨语言支持
为少数民族地区提供多语言的Agent服务:
- 语言识别:自动识别用户的语言(如蒙古语、维吾尔语);
- 翻译服务:将用户的问题翻译成汉语,调用工具后再翻译成用户的语言;
- 文化适配:根据少数民族的文化习惯,调整回答的语气和内容(如“ Ramadan期间,社保大厅的营业时间调整为9:00-17:00”)。
十、总结
Agentic AI是公共服务数字化转型的关键技术,其核心能力(目标规划、工具调用、记忆管理、协同工作)解决了传统AI的局限。作为提示工程架构师,需掌握以下要点:
- 提示设计:用Few-shot、上下文关联等技巧,让Agent学会分解问题;
- 工具管理:明确工具的功能和参数,确保Agent能正确调用;
- 记忆优化:用向量数据库存储对话历史,提供个性化服务;
- 协同对接:用中间层API对接政务系统,实现流程闭环。
未来,Agentic AI将在公共服务中发挥更大的作用,从“智能咨询”到“智能办理”,从“单一服务”到“多Agent协同”,为用户提供更高效、更个性化的服务。
如果你想深入学习Agentic AI,可以关注LangChain的官方文档(https://python.langchain.com/)和阿里云通义千问的文档(https://help.aliyun.com/product/1013008.html)。也欢迎在评论区分享你的经验和问题,我们一起探讨!
参考资料
- LangChain官方文档:https://python.langchain.com/
- 阿里云通义千问文档:https://help.aliyun.com/product/1013008.html
- 《Agentic AI Systems》论文:https://arxiv.org/abs/2309.07870
- 《提示工程实战》书籍:https://book.douban.com/subject/36508701/
- FastAPI官方文档:https://fastapi.tiangolo.com/
附录
附录1:完整源代码链接
GitHub仓库:https://github.com/your_username/social_security_agent
附录2:Dockerfile示例
FROM python:3.10-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]
附录3:架构图源文件
DrawIO文件:https://github.com/your_username/social_security_agent/architecture.drawio