- 博客(8)
- 收藏
- 关注
原创 Conda使用指南:Windows与Linux双平台详解
Conda 是一个强大的包管理和环境管理工具,适用于 Python 开发者和科研人员。本文面向 Windows 和 Linux 用户,详细介绍了 Conda 的作用、安装步骤、常用命令及使用技巧。相比 pip,Conda 提供更完善的依赖管理和环境隔离,尤其适合数据科学与机器学习项目。通过示例命令和常见问题解答,帮助读者快速上手并高效使用 Conda 管理项目环境。
2025-05-23 15:44:48
910
原创 LangChain 检索器(Retriever)逻辑与高级组合策略详解
你是否在用 LangChain 构建问答系统却总感觉检索不准?这篇博客系统梳理了 Retriever 的核心逻辑与进阶用法,深入浅出地讲解了多种检索策略(如 MMR、多查询、父文档、集成检索等),还结合实际项目给出配置建议和提示词模板。无论你是初学者还是实战开发者,都能从中找到提升检索准确率与覆盖面的实用技巧!
2025-05-23 10:24:53
1708
原创 《三步实现JSON数据转DOCX:Python自动化构建LangChain知识库指南》
通过本方案生成的标准化DOCX文档,配合LangChain的文档加载器,可以快速构建出包含丰富元数据的本地知识库。这种结构化处理方式相比直接使用原始JSON数据,在检索准确率和可解释性上都有显著提升。后续可结合自动化流水线,实现从数据更新到知识库重建的全流程无人化运维。
2025-05-22 00:05:59
965
原创 零基础也能搞定!使用 Langchain + Ollama 构建本地知识库系统详解
本文以“工业物料管理”为场景,手把手教你如何基于 LangChain 搭建一个本地化智能问答系统。通过引入 Ollama 本地大模型、Chroma 向量数据库及 BGE-M3 中文嵌入模型,实现了从原始物料数据的结构化、向量化到智能问答的完整流程。文章不仅提供了详细的代码讲解,还结合实战示例,演示如何根据自然语言提问返回结构化表格和库存建议,真正赋能仓储管理。适合具备 Python 基础的开发者快速上手并落地企业级 AI 应用。
2025-05-21 10:54:01
2175
1
原创 大模型本地化部署(一)——Ollama保姆级安装教程
本文档提供了Ollama在Windows系统的完整安装与配置流程,涵盖基础指令和常见问题解决方案。后续将深入探讨模型微调、API集成及性能优化。如有问题,请参考Ollama官方文档。
2025-05-21 09:39:30
2428
2
原创 用“做菜“来理解DeepSeek和Coze:两大AI工具该怎么选?
如果你是刚接触AI的新手,可能会觉得DeepSeek和Coze像两个相似的智能工具箱。(建议用Canva制作简单流程图:是否需要编程?→是→DeepSeek / 否→Coze)的区别,今天我们用"做菜"的比喻带你快速理解。
2025-05-13 11:59:04
504
原创 零基础在Windows玩转大模型:Docker才是你的「魔法集装箱」
想在Windows电脑上体验ChatGPT级的大模型,但被复杂的Linux安装和庞大内存需求劝退?这篇零基础指南将为你揭开Docker的神秘面纱——它就像「乐高集装箱」,无需重装系统、不用配置复杂环境,5步就能在本地运行ChatGLM等大模型!
2025-05-13 10:08:50
576
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人