RK3588平台上YOLOv8-pose模型转换:yolov8-pose.pt转yolov8-pose.onnx

YOLOv8的原生模型包含了后处理步骤,其中一些形状超出了RK3588的矩阵计算限制,因此需要对输出层进行一些裁剪。本文将详细介绍YOLOv8模型从PyTorch格式(.pt)转换为适合RK3588平台上推理的yolov8-pose.onnx结构,以便后续能够顺利将onnx转rknn格式并在RK3588设备上高效运行。注本文涉及的全部代码都已上传到百度云盘,链接置于文末

一. 模型导出onnx结构对比

    

               支持转rknn格式的onnx输出                                    &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值