Introduction to Text Mining

第一階段:基礎概念

  1. 文本挖掘的概念

    • 什麼是文本挖掘?
    • 文本挖掘與自然語言處理(NLP)的關係
    • 文本挖掘的應用場景(情感分析、文本分類、關鍵詞提取等)
  2. 基礎技術

    • 文字預處理:去除停用詞(stopwords)、標點符號、數字等
    • 斷詞與詞形還原(Stemming & Lemmatization)
    • 詞頻統計與詞雲分析

第二階段:數據處理與特徵提取

  1. 向量化表示

    • Bag of Words(BoW)
    • Term Frequency-Inverse Document Frequency(TF-IDF)
    • Word Embeddings(如 Word2Vec, GloVe, FastText)
  2. 文本相似度計算

    • 餘弦相似度(Cosine Similarity)
    • Jaccard 相似度
    • 歐幾里得距離

第三階段:機器學習與文本分析

  1. 文本分類

    • 使用 Naïve Bayes、SVM、隨機森林等演算法進行文本分類
    • 深度學習在文本分類中的應用(如 LSTM、BERT)
  2. 情感分析

    • 基於詞典的情感分析
    • 基於機器學習的情感分類
  3. 主題建模

    • LDA(Latent Dirichlet Allocation)
    • NMF(Non-negative Matrix Factorization)

第四階段:進階應用

  1. 命名實體識別(NER)
  2. 文本摘要生成
  3. 對話系統與文本生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值