解决大模型训练中的CUDA out of memory

 在训练Llama-3-8B模型的时候遇到了如下报错

OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 MiB (GPU 0; 6.00 GiB total capacity; 55.79 GiB already allocated; 0 bytes free; 55.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

在这篇文章win10+pytorch1.9+yolox模型训练_win10 pytorch 训练 表情 训练-CSDN博客看到解决方法是修改模型训练中的精度,于是尝试做了修改并实现了成功。

具体思路如下:

首先查看了训练 SFTTrainer 中的精度(sft_trainer.py 官方文档 line253)如下,说明只有当模型是4bit且不是 shared QLoRA 时,才会调用 peft_module_casting_to_bf16 函数,将PEFT模块转换为bf16(bfloat16)精度。该模型符合要求,因此去修改peft模块中的参数 bf16=False,但是还是报错,后来逐步检查发现是在模型训练初始阶段设置了bf16,将其改为float16就可以了。

关于bf16 和fp16 ,fp32这些的区别,可以参考bf16 和fp16 ,fp32的区别以及相互转换逻辑_fp16 bf16-CSDN博客

if (
        args is not None
        and args.bf16
        and getattr(model, "is_loaded_in_4bit", False)
        and not is_sharded_qlora
):
    peft_module_casting_to_bf16(model)

具体修改如下:

模型参数配置如下,预先通过 bnb_config 设置了量化和模型压缩的参数,其中bnb_4bit_compute_dtype = torch.bfloat16, 将其修改为 torch.float16 即可。

model = AutoModelForCausalLM.from_pretrained(
    'LLM-Research/Meta-Llama-3-8B-Instruct',
    trust_remote_code=True,
    config=model_config,
    quantization_config=bnb_config
)
bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch.float16,  # torch.bfloat16 --→ torch.float16
        bnb_4bit_use_double_quant=True)

我认为这样设置就已经实现了训练中使用 float16 而非 bf16,不过还是在训练参数training_arguments中设置了bf16=False,解决了CUDA out of memory问题。

至于报错中建议的调整max_split_size_mb参数方法,没有尝试这个方法,也许也可以解决。

补充一个 huggingface 链接, 同样的问题和解决方法。meta-llama/Meta-Llama-3-8B · torch.cuda.OutOfMemoryError: CUDA out of memory. (huggingface.co)

### 大模型运行时 CUDA 内存不足的解决方案 当处理大型语言模型(LLM)或其他复杂的深度学习任务时,CUDA 显存不足是一个常见的瓶颈问题。以下是几种可能有效的解决方法: #### 1. **梯度累积 (Gradient Accumulation)** 通过减少每一步训练所需的显存量来缓解内存压力。这种方法的核心思想是在多个批次上积累梯度后再执行参数更新操作。这可以显著降低单次前向传播和反向传播过程中使用的 GPU 显存量[^1]。 ```python import torch accumulation_steps = 4 # 假设我们希望将批大小扩大到原来的四倍 for batch_idx, data in enumerate(dataloader): outputs = model(data) loss = criterion(outputs, labels) / accumulation_steps loss.backward() if (batch_idx + 1) % accumulation_steps == 0: optimizer.step() optimizer.zero_grad() ``` #### 2. **混合精度训练 (Mixed Precision Training)** 利用半精度浮点数(FP16 或 BF16),可以在不牺牲太多计算精度的情况下大幅节省显存占用。PyTorch 和 TensorFlow 都支持自动混合精度功能[^3]。 ```python from torch.cuda.amp import autocast, GradScaler scaler = GradScaler() for inputs, targets in dataloader: with autocast(): outputs = model(inputs) loss = criterion(outputs, targets) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` #### 3. **分片优化器状态 (Sharded Optimizer States)** DeepSpeed 是一种流行的分布式训练框架,它提供了零冗余优化器技术(ZeRO)。这种技术会将模型权重、梯度以及优化器的状态分布在不同的设备之间存储,从而有效减少单一 GPU 的显存需求。 ```bash pip install deepspeed ``` ```python # 使用 DeepSpeed ZeRO-Offload 进行训练 deepspeed_config = { "zero_optimization": {"stage": 3}, "fp16": {"enabled": True} } model_engine, optimizer, _, _ = deepspeed.initialize( args=args, model=model, model_parameters=parameters, config_params=deepspeed_config ) ``` #### 4. **激活重计算 (Activation Re-computation/Checkpointing)** 对于某些层或模块,在正向传递期间不会保存中间张量的结果;相反,在需要这些值用于反向传播之前重新计算它们。这样做的代价是以增加额外的时间复杂度换取空间上的节约。 ```python def forward(self, input_tensor): checkpointed_output = torch.utils.checkpoint.checkpoint(some_expensive_function, input_tensor) return self.final_layer(checkpointed_output) ``` #### 5. **调整批量大小 (Batch Size Adjustment)** 如果上述策略仍然无法解决问题,则考虑进一步减小输入数据集中的样本数量直到适合当前硬件条件为止。不过需要注意的是过低的 mini-batch size 可能会影响收敛速度甚至最终效果质量。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值