韩顺平 数据结构与算法 (13) 二叉排序树(BST)

本文介绍了二叉排序树(BST),一种能够高效处理查询和添加数据的数据结构。通过比较值的大小,确保左节点小于当前节点,右节点大于当前节点。详细阐述了添加和删除操作,包括删除叶子节点、只有一颗子树的节点和有两棵子树的节点的策略,并提供了删除操作的逻辑分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二叉排序树(BST)

需求

{给你一个数列[7, 3, 10, 12, 5, 1, 9],要求能够高效的完成对数据的查询和添加}

解决方案分析

  1. 使用数组

    • 数组未排序时:可以直接在数组尾部添加,速度快,缺点:查找速度慢
    • 数组排序时:可以二分查找,查找速度快,缺点:为了保证数据的有序,在添加新数据时,找到插入位置后,后面的数据需要整体移动,速度慢
  2. 使用链式存储-链表

    • 不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。
  3. 使用二叉排序树

    • 可以使插入检索等方式速度变快
1)介绍

​ 对于二叉排序树的任何一个非叶子节点,要求左节点的值比当前节点的值小,右节点的值比当前节点的值大。

特别说明:如果有相同的值,可以将该节点放在左子节点或者右子节点

比如前面的数据[7, 3, 10, 12, 5, 1, 9],对应的二叉树添加为

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MyYVqTRz-1635431158604)(C:\Users\三木\AppData\Roaming\Typora\typora-user-images\image-20210906192551194.png)]

2)二叉排序树的添加、删除
  1. 添加:

    递归比较输入值与当前节点的值的大小,,小的在左边,大的在右边

  2. 删除(分三种情况):
    • 删除叶子节点(比如上图:2,5,9,12)
    • 删除只有一颗子树的节点(比如上图:1)
    • 删除有两棵子树的节点(比如上图:7,3,10)
  3. 思路(三种情况)
    • 公共步骤是
      • 首先定位要删除的节点,targetNode
      • 再找到targetNode的父节点parent
    1. 删除叶子节点
      • 首先定位要删除的节点,targetNode
      • 再找到targetNode的父节点parent
      • 判断targetNode是parent的左子节点还是右子节点
      • 根据前面的情况来对应删除:
        左子节点 parent.left = null
        右子节点 parent.right = null
    2. 删除只有一颗子树的情况
      • 首先定位要删除的节点,targetNode
      • 再找到targetNode的父节点parent
      • 判断targetNode的子节点是左还是右
      • 判断target Node是parent的左子节点还是右子节点
      • 根据上面两条判断分成四种情况
        1. targetNode是parent的左子节点;targetNode的子节点是左子节点
          • parent.left = targetNode.left
        2. targetNode是parent的左子节点;targetNode的子节点是右子节点
          • parent.left = targetNode.right
        3. targetNode是parent的右子节点;targetNode的子节点是左子节点
          • parent.right = targetNode.left
        4. targetNode是parent的右子节点;targetNode的子节点是右子节点
          • parent.right = targetNode.right
    3. 删除有两棵子树的节点
      • 首先定位要删除的节点,targetNode
      • 再找到targetNode的父节点parent
      • 从targetNode的右子树找到最小的节点
      • 用临时变量temp,将最小节点的值保存
      • 删除最小节点
      • targetNode.value = temp
  4. 代码实现
package DataStructures.binarysorttree;

public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        //循环的添加节点到二叉排序树
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        //中序遍历二叉排序树
        System.out.println("中序遍历二叉排序树~~");
        binarySortTree.infixOreder();

        //测试一下删除----叶子节点
 /*       binarySortTree.delNode(2);
        binarySortTree.delNode(1);
        System.out.println("删除节点后");
        binarySortTree.infixOreder();
  */

        //测试一下删除----有一个子树
 /*       binarySortTree.delNode(1);
        System.out.println("删除后");
        binarySortTree.infixOreder();
  */

        //测试一下删除----有两个子树
 /*       binarySortTree.delNode(7);
        binarySortTree.delNode(10);
        System.out.println("删除后");
        binarySortTree.infixOreder();
 */

        //大测试
        binarySortTree.delNode(2);
        binarySortTree.delNode(5);
        binarySortTree.delNode(9);
        binarySortTree.delNode(12);
        binarySortTree.delNode(7);
        binarySortTree.delNode(3);
        binarySortTree.delNode(10);
        binarySortTree.delNode(1);
        System.out.println("删除后");
        binarySortTree.infixOreder();
    }
}

//创建二叉排序树
class BinarySortTree {
    private Node root;

    //查找要删除的节点
    public Node search(int value) {
        if (root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }

    //查找要删除节点的父节点
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }

    /**
     * 返回并且删除以node为根节点的二叉排序的最小节点的值
     *
     * @param node 传入的节点(当作二叉排序树的根节点)
     * @return 返回的以node为根节点的二叉排序树额最小节点的值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //循环的查找左节点,就会找到最小值
        while (target.left != null) {
            target = target.left;
        }
        //删除最小节点
        delNode(target.value);
        return target.value;
    }
    //与上面相反,这是以tergetNode节点左子树的最大值的Node代替tergetNode
    public int delLetfTreeMin(Node node) {
        Node target = node;
        //循环的查找左节点,就会找到最小值
        while (target.right != null) {
            target = target.right;
        }
        //删除最大节点
        delNode(target.value);
        return target.value;
    }

    //删除节点
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            //1. 首先定位要删除的节点,targetNode
            Node targetNode = search(value);
            //如果没有找到要删除的节点
            if (targetNode == null) {
                return;
            }
            //如果这个二叉树只有一个节点,并且顺利度过上一个步骤
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }
            //如果找到了targetNode并且还是大于等于2个节点的二叉树
            //2. 再找到targetNode的父节点parent
            Node parent = searchParent(value);
            //3.1 如果要删除的节点是叶子节点
            if (targetNode.left == null && targetNode.right == null) {
                //3.1.1判断targetNode是parent的左子节点还是右子节点后置空删除
                if (parent.left != null && parent.left.value == value) {
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) {
                //3.3 删除有两棵子树的节点
                //3.3.1 从targetNode的右子树找到最小的节点,删除,并且赋值
//                int minVal = delRightTreeMin(targetNode.right);
//                targetNode.value = minVal;
                //3.3.1 从targetNode的左子树找到最大的节点,删除,并且赋值
                int maxVal  = delLetfTreeMin(targetNode.left);
                targetNode.value = maxVal;
            } else {
                //3.2 删除只有一颗子树的情况
                if (targetNode.left != null) {
                    if (parent != null) {
                        //3.2.1 如果targetNode有左节点
                        //3.2.1.1 如果targetNode是parent的左节点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else {
                            //3.2.1.2 如果targetNode是parent的右节点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else {
                    if (parent != null) {
                        //3.2.2 如果targetNode有右节点
                        //3.2.2.1 如果targetNode是parent的左节点
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else {
                            //3.2.1.2 如果targetNode是parent的右节点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }

            }

        }
    }

    //添加节点的方法
    public void add(Node node) {
        if (root == null) {
            root = node;
        } else {
            root.add(node);
        }
    }

    //中序遍历
    public void infixOreder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("当前二叉排序树为空");
        }
    }
}


//创建节点
class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {
        super();
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node{" + "value=" + value + '}';
    }

    //添加节点
    //递归的形式添加节点,需要满足二叉排序树的要求
    public void add(Node node) {
        if (node == null) {
            return;
        }
        //判断传入的节点的值,和当前子树的根节点的值的关系
        if (node.value < this.value) {
            if (this.left == null) {
                this.left = node;
            } else {
                this.left.add(node);
            }
        } else {
            if (this.right == null) {
                this.right = node;
            } else {
                this.right.add(node);
            }
        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }


    //删除节点
    /*
     * 考虑点
     * 1. 删除叶子节点
     * 2. 删除只有一颗子树的节点
     * 3. 删除有两颗子树的节点
     */

    /**
     * 为删除节点做方法准备->查找要删除的节点
     *
     * @param value 希望删除的节点的值
     * @return 如果找到了返回该节点, 没有找到就返回null
     */
    public Node search(int value) {
        if (value == this.value) {
            //找到
            return this;
        } else if (value < this.value) {
            //向左查找
            //如果左子节点为空,就意味着没找到
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else {//value>this.value
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
    }

    /**
     * 查找要删除节点的父节点
     *
     * @param value 要找到的节点(targetNode)的值
     * @return 返回的是要删除的节点父节点,如果没有接返回null
     */
    public Node searchParent(int value) {
        // 如果当前节点就是要删除的节点的父节点,就返回
        if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
            return this;
        } else {
            // 如果查找的值小于当前节点的值,并且当前节点的左子节点不为空
            if (value < this.value && this.left != null) {
                return this.left.searchParent(value);
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value);
            } else {
                return null;//没有找都父节点
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值