非结构化数据怎么治理?

本文探讨了非结构化数据治理的挑战,包括数据分散、标准不一、种类繁多等问题。作者强调企业在治理非结构化数据前,首先需要梳理数据分布,明确治理重点。第一步不是直接进行数据盘点或汇聚,而是理解数据的重要性和影响,然后通过应用牵引,如使用NLP技术结构化数据,快速打造示范项目以建立信心。非结构化数据管理难度高,需要慎重对待。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fa5a3683cc710ad60dd8a950949c58f1.png

编 辑:彭文华

来 源:大数据架构师

彭友们好,我是老彭。最近遇到几个项目,都跟非结构化数据脱不开关系。

老彭刚毕业的时候,做的是数据库的活儿,那都是结构化数据。后来有了hadoop技术,可以用来处理物联网、互联网的半结构化数据。

真正做非结构化的场景还是比较少的,大多是在项目中选取一两个点给意思意思一下。

但是现在已经发展这么多年了,大多数企业结构化数据多少有些基础了,非结构化数据治理还是一片空白。今天就唠唠这个话题~~

d3847c56f0d55ab04faeb840011b286c.jpeg

非结构化数据

这里说的非结构化数据特指:

1、公文、研究报告等各种文档

2、监控视频等各种音视频

3、设计图等各种特殊文件

这些东西想想就很费劲。与数据库里的结构化数据不一样,这些数据的问题更严重。我们随便想想都能罗列几个出来:

1、没有统一存储(各种附件,各种微信传输)

2、没有统一标准(都是各自写的文件)

3、数据种类特别多(除了结构化的,都是非结构化、半结构化的)

4、法外之地,治理盲区(第一次知道处理非结构化数据的方法是TF/IDF词频统计,第一次知道非结构化应用是词云)

5、没人管,不知道怎

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值