RNA-seq(1)

基本认识

转录组测序(RNA-seq) 是通过高通量测序技术对细胞或组织中的RNA(主要是mRNA,也可包括非编码RNA)进行测序,以研究基因表达水平、可变剪切、融合基因、新转录本等。

RNA-seq通过从细胞中提取RNA并将其逆转录为cDNA,然后进行测序,从而能够全面、精确地量化基因表达水平和研究基因表达的动态变化。这一技术不仅能够分析不同样本间的基因表达差异,还能用于发现新的转录本亚型、可变剪接事件以及RNA编辑和突变等。

文库构建流程:片段化RNA → 反转录为cDNA → 加测序接头 → PCR扩增。

数据格式:常见的转录组测序数据格式有 FASTQ(原始测序数据)、SAM/BAM(比对后数据)、GFF/GTF(基因注释信息)等。

分析流程:①测序数据下载(SRA Toolkit、ascp);②测序数据质控(Fastp、MultiQC、Trim_Galore);③序列比对(SAMtools、HISAT2、Subread、samtools);④表达定量(featureCounts);⑤差异表达分析(Limma、DESeq2)及富集分析(clusterProfiler)等。

相关结果文件:如果交给测序公司测序并分析,返回的文件信息。

01.原始数据(Raw Data),格式.fastq 或 .fq(包含测序的原始序列和质量信息)。示例
Sample1_R1.fastq.gz(正向测序文件);Sample1_R2.fastq.gz(反向测序文件,双端测序)

02.比对文件(Alignment Files),格式.bam 或 .sam(比对到参考基因组的序列文件)。可能包含:Sample1.aligned.bam(比对结果),Sample1.bam.bai(BAM索引文件)

03.GeneExp:基因表达量;

04.差异表达分析(Differential Expression Analysis),内容:差异基因列表(如对照组 vs 处理组),通常包含:基因名称、log2FoldChange、p-value、FDR值(校正后p值)。工具:DESeq2、edgeR、limma。文件示例:DE_genes_A_vs_B.csv(差异基因表格)Volcano_Plot.pdf(火山图可视化)。

05. 差异表达基因(DEGs)的注释文件(diffexpanno ),结合了差异表达统计结果(如log2FC、p值)和基因的生物学注释信息(如基因名称、功能描述、通路等),方便用户快速理解差异基因的潜在功能。

06.功能富集分析(Functional Enrichment),GO/KEGG富集结果:差异基因的生物学功能或通路富集分析。文件示例:GO_Enrichment.xlsx(GO条目富集结果),KEGG_Pathway_Analysis.pdf(通路可视化图)。

07.差异表达基因的聚类分析结果(diffexpcluster 文件),基因表达量的聚类热图(Heatmap)、聚类分组信息(如k-means或层次聚类结果),或基因在不同条件下的表达趋势。

我们自己做转录组分析基本上得到的也是这些结果,可以作为参考。

RNA提取及文库构建、测序

在对 RNA 进行测序前,必须从细胞环境中提取和分离出 RNA 制备成 cDNA 文库。下面将介绍涉及的步骤,包括了质量检查,以确保获取高质量的 RNA。

1.RNA富集

使用 DNAse 处理(去除 DNA 序列)后,样本会进行 mRNA 的富集(polyA 富集)或 rRNA 的去除。

质量检查:在开始 cDNA 文库制备之前,须检查提取的 RNA 的完整性。传统:通过凝胶电泳评估 RNA 的完整性;也可用生物分析仪系统可以快速评估 RNA 完整性并计算 RNA 完整性值 (RIN)。

2.碎片化
将剩余的 RNA 分子片段化(打断)。通过化学、酶促(例如 RNA 酶)或物理过程(例如机械剪切)完成。对这些片段进行大小选择,仅保留 Illumina 测序仪最佳处理范围内的那些片段,即 150 到 300 bp 之间。

片段质量检查:评估片段大小分布,确保分布为单峰。

3.反转录

创建 strand library 来保存有关片段源自链的信息。常用方法是在第二条 cDNA 链的合成过程中加入 deoxy-UTP。一旦生成双链 cDNA 片段,序列接头就会连接到末端。(也可以在此步后进行片段大小选择)

4.PCR扩增

将 cDNA 分子的数量增加到足以进行测序的量,通常会对文库进行 PCR 扩增。此步骤应尽可能少,避免 PCR 扩展产生的技术影响。

5.测序

cDNA 文库的测序将生成 reads (读数)。读数对应于文库中每个 cDNA 片段末端的核苷酸序列。可以选择对 cDNA 片段的单端(单端读取)或片段的两端(双端读取)进行测序。

Illumina 测序技术采用边合成边测序的方法。

最终获得测序文件。

参考资料:

https://zhuanlan.zhihu.com/p/61847802

转录组分析得到的结果到底应该怎么看,这些乱七八糟的文件都是啥_哔哩哔哩_bilibili

转录组专题 | 保姆级教程,手把手教你看懂真核转录组测序结果_武汉爱基百客生物科技有限公司

RNA-seq 详细教程:分析流程介绍(1)_rnaseq-CSDN博客

https://zhuanlan.zhihu.com/p/483263741

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值