VGG16网络结构

VGG16是深度为16层的卷积神经网络,包括13个卷积层和3个全连接层。其特点是使用3x3的小卷积核,通过堆叠增加深度,配合2x2的最大池化层。网络结构由64、128、256、512个卷积核的层组成,最后是全连接层和softmax预测层。VGG16通过小卷积核实现参数减少和计算效率的提高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VGGNet模型有A-E五种结构网络,深度分别为11,11,13,16,19,其中VGG16和VGG19较为典型。VGG网络结构如下图所示。

VGG16介绍:

在卷积层1(conv3_64),卷积层2(conv3_128),卷积层3(conv3_256),卷积层4(conv3_512)

分别有64个,128个,256个,512个3X3卷积核,在每两层之间有池化层stride为2的2X2池化矩阵(maxpool)。在卷积层5(conv3_512)后有全连接层,再之后是soft-max预测层。

(1)conv3-64 :是指第三层卷积后维度变成64,同样地,conv3-128指的是第三层卷积后              维度变成128;

(2)input(224X224 RGB image)指的是输入图像大小为224X224的彩色图像,通道为3,             即224X224X3

(3)maxpool 是指最大池化,在VGG16中,pooling采用的是2x2的最大池化方法;

(4)FC-4096 指的是全连接层中有4096个节点,同样地,FC-1000为该层全连接层有1000           个节点;

(5)padding指的是对矩阵在外边填充n圈,padding=1即外边缘填充1圈,5x5大小的矩                  阵,填充一圈后变成7x7大小; 在进行卷积操作的过程中,处于中间位置的数值容易              被进行多次的提取,但是边界数值的特征提取次数相对较少,为了能更好的把边界数              值也利用上,所以给原始数据矩阵的四周都补上一层0,这就是padding操作。

(6)vgg16每层卷积的滑动步长stride=1,padding=1。

 从上图可以看出VGG16由13个卷积层+3个全连接层=16层构成,过程为:

(1)输入224*224*3的图片

(2)conv1_1+conv1_2+pool1:经过64个3*3卷积核的两次卷积后,采用一次max pooling。           经过第一次卷积后有3*3*3*64=1728个训练参数;第二次卷积后有3*3*64*64=36864              个训练参数,大小变为112*112*64 (池化层采用尺寸为2X2,str

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值